Math Problem Statement
Find the exact value of each expression.
(a)
tangent StartFraction pi Over 4 EndFractiontanπ4
(b) sine StartFraction pi Over 3 EndFraction
Solution
Let's computeLet's evaluate the each exact expression values step for by each of step.
the### given ( expressionsa step) by \ step:
(\tan---
###left (afrac){\pi \(}{ \4tan}\\rightleft)\( fracThe{\ tangentpi of}{ \4(}\fracright{)pi ):}{4
}\The) tangent ( of45 (° \ infrac degrees{\pi) can}{ be4 evaluated} using \ the) unit radians circle ( oror trigon45ometric° properties). is From a the well unit-known circle tr: igon\ometric[ value\t:
an$$left\t(\anfrac{\leftpi(}{frac4{}\piright}{)4 =}\ \right)frac{\ =sin \fracleft{\sinfrac\{\leftpi(\}{frac4{\}\piright}{4)}{\}\cosright}{\left(\cosfrac{\leftpi(}{frac4{}\piright}{)}4 =}\ \rightfrac)} {$$
frac{\Forsqrt { \2frac}}{\{pi}{2}}4{\}frac \{: sqrt$${\2}}sin{2left}}(\ =frac {\1pi}{ \4]
}\rightSo),
=[
\tcosan\leftleft((\fracfrac{{\pipi}{}{44}}\right)right) = = \ frac1{
sqrt{\2]
}}###{ (2b}. )$$
(\Thussin: $$left(\tfracan{\pileft}{(\3frac}{\rightpi}{)\4) }\The sineright of) \ =(\ \fracfrac{{\pifrac}{{\3sqrt{})2 (}}60{2°}} in degrees{)frac is{\ asqrt well{-known2}} trigon{ometric2 value}} =: \ [ 1. \sin$$
leftSo(,frac {\pi[ }{\t3an}\rightleft)(\ =frac {\fracpi{}{sqrt4{}\3right}}){ =2 } 1. ]
---
]
###---
Final### Answer : ((ab)) \ ((\ \tansin\leftleft((\fracfrac{{\pipi}{}{43}}\rightright)) = \ ):1
\The) sine
of(b ) \ \frac(\{\sinpi\}{left3(\}frac \{pi radians}{ (3or}\ right60°) =) \ isfrac another{\ standardsqrt tr{igon3ometric}} value{:
2}[ )
---
sinWould\ youleft(\ like furtherfrac explanation{\ orpi additional}{ examples3?}\
rightHere) are = \5frac related{\ questionssqrt for{3 practice:
}}1{2.}.
What\ is]
(---
cos###\ *leftFinal(\ Answersfrac:{*
pi(a}{)3 )?
left2(.frac What{\ ispi }{(\4tan}\right\left)(\ =frac {\1pi }{)
6}(bright))\ ()?
\3sin.\left What is(\ \frac({\sinpi}{left3(}\fracright{)pi =}{ \6frac}{\rightsqrt){3)?
4}}.{ Find2 }(\ \cot)
---
leftWould(\ youfrac like{\ furtherpi explanation}{ or4 examples}\ relatedright to)\ tr). igon5ometric values. Simpl?
ify---
###(\ Relatedsin Questions^: 21. Whatleft(\ arefrac the cosine{\ andpi}{ tangent3 values}\ ofright ) \ +frac \{\cospi^}{32}\left \(frac radians? {\2pi}{. How3 can}\ youright use)\ the).
** unitTip circle to:** Always verify refer \ to thetan unit\ circleleft for(\ quickfrac access{\ topi tr}{igon4ometric}\right values) of = standard angles 1.? 3. What are the values of and ? 4. How are the sine and cosine values related for complementary angles like and ? 5. Can you derive the value of or using a right triangle?
Tip:
Remember the special triangle values for , , and to quickly compute sine, cosine, and tangent values. These angles frequently appear in trigonometry problems!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Unit Circle
Special Angles
Formulas
tan(θ) = sin(θ) / cos(θ)
Exact values for sin(π/3), cos(π/3), and tan(π/4)
Theorems
Trigonometric Ratios for Special Angles
Suitable Grade Level
Grades 9-12
Related Recommendation
Exact Value of sin(π/3) - Trigonometry Solution
Exact Values of Trigonometric Functions at π/2 and -π/2 using the Unit Circle
Exact Value of tan(4π/3 + 7π/4) Using the Sum of Angles Formula
How to Calculate tan(5π/4) Without a Calculator: Step-by-Step Guide
Exact Value of tan(150°): Step-by-Step Solution