Math Problem Statement
Solution
To find the median for the grouped frequency distribution table provided, let's go through the steps.
Steps to Approximate the Median in a Grouped Frequency Distribution
-
Identify the total frequency: Sum all the frequencies to find the total number of data points.
Given:
-
Find : Divide the total frequency by 2 to determine the median position.
-
Locate the median class: The median class is the class interval where the cumulative frequency reaches or exceeds 40.5.
Calculating cumulative frequencies:
- 30-34:
- 35-39:
- 40-44:
- 45-49:
- 50-54:
- 55-59:
- 60-64:
The cumulative frequency exceeds 40.5 for the first time in the class interval 55-59, making it the median class.
-
Find the midpoint of the median class: The median class is 55-59, so its midpoint is:
Answer
The approximate median, reported as the midpoint of the class containing the median, is 57.
Would you like a deeper explanation of any part of this process?
Here are five related questions to deepen your understanding:
- How is the median class determined in a grouped frequency distribution?
- Why is the midpoint of the median class used as an estimate of the median?
- How would this process change if there were unequal class intervals?
- Can this method of median calculation be used for non-numeric grouped data?
- How does the median differ from the mean in terms of sensitivity to outliers?
Tip: In grouped data, always check the cumulative frequency carefully to accurately locate the median class.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Statistics
Grouped Frequency Distribution
Median
Formulas
Median = L + [(N/2 - F) / f] * h
Theorems
Median in Grouped Frequency Distribution
Suitable Grade Level
Grades 10-12
Related Recommendation
Median Calculation for Grouped Data with Frequency Distribution
How to Calculate the Median from a Grouped Frequency Distribution
How to Calculate the Median of a Frequency Distribution
How to Find the Median from Grouped Frequency Distribution
How to Find the Median of a Grouped Data Frequency Distribution