Math Problem Statement
x^2+y^2=1のときA=x^2+2xy-y^2の最大値、最小値を求めよ。
Solution
与えられた条件 の下で、関数 の最大値と最小値を求めます。
まず、 と を次のように置きます: ここで、 は から までの角度です。この関係を利用して、関数 を の関数として表現します。
次に、三角関数の恒等式を使って整理します:
ここで、 は に等しく、 は に等しいため:
さらに、 を極形式で表現すると:
ここで、 は定数であり、 関数の最大値は 1、最小値は -1 です。したがって、 の最大値と最小値は次のようになります:
最大値:
最小値:
したがって、関数 の最大値は 、最小値は です。
何か質問や詳細が必要ですか?次の5つの質問も試してみてください:
- 三角関数の基本的な恒等式を説明してください。
- 三角関数のグラフの描き方を教えてください。
- 単位円上の任意の点の座標を求める方法を教えてください。
- 最大値と最小値の問題を解く際の一般的な手法を説明してください。
- 複素数の基本的な性質について教えてください。
Tip: 三角関数の恒等式をしっかりと覚えると、複雑な関数の最大値・最小値を求めるのに役立ちます。
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Maxima and Minima
Formulas
Trigonometric identities
Theorems
-
Suitable Grade Level
Advanced Mathematics
Related Recommendation
Absolute Max and Min of f(x, y) = x - y on x² + y² ≤ 4
Find Minimum Value of x^2 + 2y^2 with Constraints x + y = 4
Find Absolute Extrema of f(x, y) = x^2 - xy + y^2 on a Half-Plane
Minimizing Expression x^2 + xy + y^2 with Constraint x^2 - xy - 6y^2 = 1
Minimize x^2 + xy + y^2 under the Constraint x^2 - xy - 6y^2 = 1