Math Problem Statement

find a-b and a+b

Solution

To find ABA - B and A+BA + B, we will subtract and add the corresponding elements of matrices AA and BB.

Given:

1 & 0 & 1 & 2 \\ 0 & -1 & -2 & 3 \\ 4 & -3 & 1 & 5 \\ 2 & -4 & -1 & 0 \end{pmatrix}$$ $$B = \begin{pmatrix} 5 & 3 & -1 & 8 \\ 2 & 0 & 7 & 4 \\ -2 & -3 & -3 & -5 \\ 4 & 1 & 1 & -2 \end{pmatrix}$$ ### Finding $$A - B$$: $$A - B = \begin{pmatrix} 1-5 & 0-3 & 1-(-1) & 2-8 \\ 0-2 & -1-0 & -2-7 & 3-4 \\ 4-(-2) & -3-(-3) & 1-(-3) & 5-(-5) \\ 2-4 & -4-1 & -1-1 & 0-(-2) \end{pmatrix}$$ $$A - B = \begin{pmatrix} -4 & -3 & 2 & -6 \\ -2 & -1 & -9 & -1 \\ 6 & 0 & 4 & 10 \\ -2 & -5 & -2 & 2 \end{pmatrix}$$ ### Finding $$A + B$$: $$A + B = \begin{pmatrix} 1+5 & 0+3 & 1+(-1) & 2+8 \\ 0+2 & -1+0 & -2+7 & 3+4 \\ 4+(-2) & -3+(-3) & 1+(-3) & 5+(-5) \\ 2+4 & -4+1 & -1+1 & 0+(-2) \end{pmatrix}$$ $$A + B = \begin{pmatrix} 6 & 3 & 0 & 10 \\ 2 & -1 & 5 & 7 \\ 2 & -6 & -2 & 0 \\ 6 & -3 & 0 & -2 \end{pmatrix}$$ So, the matrices $$A - B$$ and $$A + B$$ are: $$A - B = \begin{pmatrix} -4 & -3 & 2 & -6 \\ -2 & -1 & -9 & -1 \\ 6 & 0 & 4 & 10 \\ -2 & -5 & -2 & 2 \end{pmatrix}$$ $$A + B = \begin{pmatrix} 6 & 3 & 0 & 10 \\ 2 & -1 & 5 & 7 \\ 2 & -6 & -2 & 0 \\ 6 & -3 & 0 & -2 \end{pmatrix}$$ Would you like more details or have any questions? Here are five questions you can ask: 1. How do you determine the determinant of a matrix? 2. Can you explain matrix multiplication with examples? 3. What is the inverse of a matrix, and how is it computed? 4. How do you solve a system of linear equations using matrices? 5. What are eigenvalues and eigenvectors of a matrix? **Tip:** When performing matrix operations, always ensure the matrices are of compatible dimensions. For addition and subtraction, both matrices must have the same dimensions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Operations
Matrix Addition
Matrix Subtraction

Formulas

-

Theorems

-

Suitable Grade Level

Advanced High School