Math Problem Statement

Find all intervals on which the function f(x) = e^(4x^2 - 2x) / 4x is increasing.

Solution

To determine the intervals where the function f(x)=e4x22x4xf(x) = \frac{e^{4x^2 - 2x}}{4x} is increasing, we need to follow these steps:


Step 1: Compute the derivative f(x)f'(x).

We use the quotient rule: ddx(u(x)v(x))=u(x)v(x)u(x)v(x)[v(x)]2,\frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}, where: u(x)=e4x22x,v(x)=4x.u(x) = e^{4x^2 - 2x}, \quad v(x) = 4x.

  • Derivative of the numerator (u(x)u(x)): u(x)=e4x22xddx(4x22x)=e4x22x(8x2).u'(x) = e^{4x^2 - 2x} \cdot \frac{d}{dx}(4x^2 - 2x) = e^{4x^2 - 2x} \cdot (8x - 2).

  • Derivative of the denominator (v(x)v(x)): v(x)=ddx(4x)=4.v'(x) = \frac{d}{dx}(4x) = 4.

Using the quotient rule, the derivative is: [ f'(x) = \frac{\left[ e^{4x^2 - 2x} \cdot (8x - 2) \cdot (4x) \right] - \left[ e^{4x^2 - 2x} \cdot 4 \right]}{(4x)^2}. ]


Step 2: Simplify the expression for f(x)f'(x).

Factoring out e4x22xe^{4x^2 - 2x} from the numerator: f(x)=e4x22x[(8x2)(4x)4]16x2.f'(x) = \frac{e^{4x^2 - 2x} \left[ (8x - 2)(4x) - 4 \right]}{16x^2}.

Expand and simplify the numerator: (8x2)(4x)=32x28x,(8x - 2)(4x) = 32x^2 - 8x, so: (32x28x)4=32x28x4.(32x^2 - 8x) - 4 = 32x^2 - 8x - 4.

Thus: f(x)=e4x22x(32x28x4)16x2.f'(x) = \frac{e^{4x^2 - 2x} (32x^2 - 8x - 4)}{16x^2}.


Step 3: Analyze where f(x)>0f'(x) > 0.

Since e4x22x>0e^{4x^2 - 2x} > 0 for all xx, the sign of f(x)f'(x) depends on: 32x28x4>0.32x^2 - 8x - 4 > 0.

Factorize or solve the quadratic equation 32x28x4=032x^2 - 8x - 4 = 0 using the quadratic formula: x=b±b24ac2a,a=32,b=8,c=4.x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \quad a = 32, \, b = -8, \, c = -4.

x=(8)±(8)24(32)(4)2(32)=8±64+51264=8±57664.x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(32)(-4)}}{2(32)} = \frac{8 \pm \sqrt{64 + 512}}{64} = \frac{8 \pm \sqrt{576}}{64}.

x=8±2464.x = \frac{8 \pm 24}{64}.

This gives two roots: x=3264=12,x=1664=14.x = \frac{32}{64} = \frac{1}{2}, \quad x = \frac{-16}{64} = -\frac{1}{4}.


Step 4: Determine intervals of increase.

The critical points are x=14x = -\frac{1}{4} and x=12x = \frac{1}{2}. Test the sign of 32x28x432x^2 - 8x - 4 in each interval:

  1. x<14x < -\frac{1}{4},
  2. 14<x<12-\frac{1}{4} < x < \frac{1}{2},
  3. x>12x > \frac{1}{2}.
  • For x<14x < -\frac{1}{4}, choose x=1x = -1: 32(1)28(1)4=32+84=36>0.32(-1)^2 - 8(-1) - 4 = 32 + 8 - 4 = 36 > 0.

  • For 14<x<12-\frac{1}{4} < x < \frac{1}{2}, choose x=0x = 0: 32(0)28(0)4=4<0.32(0)^2 - 8(0) - 4 = -4 < 0.

  • For x>12x > \frac{1}{2}, choose x=1x = 1: 32(1)28(1)4=3284=20>0.32(1)^2 - 8(1) - 4 = 32 - 8 - 4 = 20 > 0.

Thus, f(x)>0f'(x) > 0 on: (,14)and(12,).(-\infty, -\frac{1}{4}) \quad \text{and} \quad (\frac{1}{2}, \infty).


Final Answer:

The function f(x)f(x) is increasing on the intervals: (,14)(12,).(-\infty, -\frac{1}{4}) \cup (\frac{1}{2}, \infty).


Would you like a deeper explanation of any step or a graph of the function? 😊

5 Related Questions:

  1. How do you determine where a function is decreasing?
  2. What is the significance of critical points in calculus?
  3. How is the quadratic formula applied to solve inequalities?
  4. Why is the exponential function always positive?
  5. What role does the derivative test play in analyzing functions?

Tip:

Always simplify the derivative as much as possible before analyzing its sign—it makes finding intervals of increase or decrease much easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Derivative
Quotient Rule
Quadratic Equations
Interval Analysis

Formulas

Derivative of a quotient: (u/v)' = (u'v - uv') / v^2
Quadratic formula: x = (-b ± √(b² - 4ac)) / 2a

Theorems

Critical points analysis
Sign analysis for inequalities

Suitable Grade Level

Grades 11-12 or Calculus I