Math Problem Statement
הוקטורים
(3,2,−3),(−1,3,1)
מקבילים שניהם למישור המשיק של משטח הרמה של הפונקציה u(x,y,z)=x2+y2+z2
עבור u=4
. מצאו את נקודות ההשקה.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vectors
Gradient
Plane Equations
Cross Product
Formulas
Gradient formula: \( \nabla u = (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}) \)
Theorems
-
Suitable Grade Level
Advanced Undergraduate
Related Recommendation
Finding Intersection Points of Vectors with Tangent Plane to Surface u(x,y,z)=x^2+y^2+z^2 for u=4
Finding Intersection Points of Vectors with the Tangent Plane to a Sphere
Finding Intersection Points of Vectors with a Sphere Surface
Find a Vector Equation for the Tangent Line to the Curve of Intersection of Surfaces
Find a Point on the Hyperboloid with a Parallel Tangent Plane