Math Problem Statement

Find all four distinct fourth roots of -16i

Solution

To find all four distinct fourth roots of 16i-16i, we'll proceed as follows:

1. Express the complex number in polar form

First, we express 16i-16i in polar form. The polar form of a complex number z=x+yiz = x + yi is given by:

z=r(cosθ+isinθ)z = r \left(\cos \theta + i \sin \theta \right)

where:

  • r=x2+y2r = \sqrt{x^2 + y^2} is the modulus of the complex number.
  • θ=tan1(yx)\theta = \tan^{-1}\left(\frac{y}{x}\right) is the argument (angle) of the complex number.

For 16i-16i, we have:

  • x=0x = 0 and y=16y = -16.

So, the modulus rr is:

r=02+(16)2=256=16r = \sqrt{0^2 + (-16)^2} = \sqrt{256} = 16

Next, we calculate the argument θ\theta. Since the point is purely imaginary and lies on the negative imaginary axis:

θ=tan1(160)=π2\theta = \tan^{-1}\left(\frac{-16}{0}\right) = -\frac{\pi}{2}

Therefore, the polar form of 16i-16i is:

16i=16(cos(π2)+isin(π2))-16i = 16 \left(\cos\left(-\frac{\pi}{2}\right) + i \sin\left(-\frac{\pi}{2}\right)\right)

2. Find the fourth roots

The fourth roots of a complex number in polar form r(cosθ+isinθ)r \left(\cos \theta + i \sin \theta \right) are given by:

zk=r4(cos(θ+2kπ4)+isin(θ+2kπ4))fork=0,1,2,3z_k = \sqrt[4]{r} \left( \cos\left(\frac{\theta + 2k\pi}{4}\right) + i \sin\left(\frac{\theta + 2k\pi}{4}\right) \right) \quad \text{for} \quad k = 0, 1, 2, 3

For our case:

  • r=16r = 16, so r4=164=2\sqrt[4]{r} = \sqrt[4]{16} = 2.
  • θ=π2\theta = -\frac{\pi}{2}.

The roots are then:

zk=2(cos(π2+2kπ4)+isin(π2+2kπ4))z_k = 2 \left( \cos\left(\frac{-\frac{\pi}{2} + 2k\pi}{4}\right) + i \sin\left(\frac{-\frac{\pi}{2} + 2k\pi}{4}\right) \right)

3. Calculate each root

For k=0k = 0:

[ z_0 = 2 \left( \cos\left(\frac{-\frac{\pi}{2} + 0}{4}\right) + i \sin\left(\frac{-\frac{\pi}{2}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Fourth Roots

Formulas

Polar form of a complex number
Fourth roots of a complex number

Theorems

-

Suitable Grade Level

Advanced High School