Math Problem Statement

Let f(x)=(9/x)+9 and g(x)=(x+3)/(x−8), find the formula for fog, find the domain of fog, find gof, and find the domain of gof, for the domain answer in interval notation

Solution

Let's solve the problem step-by-step.

1. Finding f(g(x))f(g(x)) or fg(x)f \circ g(x)

Given:

  • f(x)=9x+9f(x) = \frac{9}{x} + 9
  • g(x)=(x+3)(x8)g(x) = \frac{(x+3)}{(x-8)}

To find f(g(x))f(g(x)), substitute g(x)g(x) into f(x)f(x): f(g(x))=f(x+3x8)f(g(x)) = f\left( \frac{x+3}{x-8} \right) Now, replace xx in f(x)f(x) with x+3x8\frac{x+3}{x-8}: f(x+3x8)=9x+3x8+9f\left( \frac{x+3}{x-8} \right) = \frac{9}{\frac{x+3}{x-8}} + 9 Simplify 9x+3x8\frac{9}{\frac{x+3}{x-8}}: 9(x8)x+3\frac{9 \cdot (x-8)}{x+3} So, f(g(x))=9(x8)x+3+9f(g(x)) = \frac{9(x-8)}{x+3} + 9

Next, find a common denominator to simplify further: f(g(x))=9(x8)+9(x+3)x+3f(g(x)) = \frac{9(x-8) + 9(x+3)}{x+3} f(g(x))=9(x8+x+3)x+3f(g(x)) = \frac{9(x-8+x+3)}{x+3} f(g(x))=9(2x5)x+3f(g(x)) = \frac{9(2x - 5)}{x+3}

So, the formula for fg(x)f \circ g(x) is: f(g(x))=18x45x+3f(g(x)) = \frac{18x - 45}{x+3}

2. Domain of f(g(x))f(g(x))

For f(g(x))f(g(x)), we need to consider two things:

  1. The domain restrictions of g(x)g(x).
  2. The domain restrictions of f(g(x))f(g(x)).

Domain restrictions of g(x)g(x):

  • g(x)=x+3x8g(x) = \frac{x+3}{x-8}
  • x80x8x-8 \neq 0 \Rightarrow x \neq 8

Domain restrictions of f(g(x))f(g(x)):

  • The formula f(g(x))=18x45x+3f(g(x)) = \frac{18x - 45}{x+3} implies x+30x3x+3 \neq 0 \Rightarrow x \neq -3.

Combining both restrictions:

  • x8x \neq 8
  • x3x \neq -3

So, the domain of f(g(x))f(g(x)) is: (,3)(3,8)(8,)(-\infty, -3) \cup (-3, 8) \cup (8, \infty)

3. Finding g(f(x))g(f(x)) or gf(x)g \circ f(x)

To find g(f(x))g(f(x)), substitute f(x)f(x) into g(x)g(x): g(f(x))=g(9x+9)g(f(x)) = g\left( \frac{9}{x} + 9 \right) Now, replace xx in g(x)g(x) with 9x+9\frac{9}{x} + 9: g(9x+9)=(9x+9+3)(9x+98)g\left( \frac{9}{x} + 9 \right) = \frac{\left( \frac{9}{x} + 9 + 3 \right)}{\left( \frac{9}{x} + 9 - 8 \right)} Simplify the numerator: 9x+9+3=9x+12\frac{9}{x} + 9 + 3 = \frac{9}{x} + 12 Simplify the denominator: 9x+98=9x+1\frac{9}{x} + 9 - 8 = \frac{9}{x} + 1 So, g(f(x))=9x+129x+1g(f(x)) = \frac{\frac{9}{x} + 12}{\frac{9}{x} + 1}

To simplify, multiply numerator and denominator by xx: g(f(x))=9+12x9+xg(f(x)) = \frac{9 + 12x}{9 + x}

So, the formula for gf(x)g \circ f(x) is: g(f(x))=12x+9x+9g(f(x)) = \frac{12x + 9}{x + 9}

4. Domain of g(f(x))g(f(x))

For g(f(x))g(f(x)), we need to consider two things:

  1. The domain restrictions of f(x)f(x).
  2. The domain restrictions of g(f(x))g(f(x)).

Domain restrictions of f(x)f(x):

  • f(x)=9x+9f(x) = \frac{9}{x} + 9
  • x0x \neq 0

Domain restrictions of g(f(x))g(f(x)):

  • The formula g(f(x))=12x+9x+9g(f(x)) = \frac{12x + 9}{x + 9} implies x+90x9x+9 \neq 0 \Rightarrow x \neq -9.

Combining both restrictions:

  • x0x \neq 0
  • x9x \neq -9

So, the domain of g(f(x))g(f(x)) is: (,9)(9,0)(0,)(-\infty, -9) \cup (-9, 0) \cup (0, \infty)

Summary:

  1. Formula for f(g(x))f(g(x)): f(g(x))=18x45x+3f(g(x)) = \frac{18x - 45}{x+3}
  2. Domain of f(g(x))f(g(x)): (,3)(3,8)(8,)(-\infty, -3) \cup (-3, 8) \cup (8, \infty)
  3. Formula for g(f(x))g(f(x)): g(f(x))=12x+9x+9g(f(x)) = \frac{12x + 9}{x + 9}
  4. Domain of g(f(x))g(f(x)): (,9)(9,0)(0,)(-\infty, -9) \cup (-9, 0) \cup (0, \infty)

Do you want more details on any of these steps, or have any other questions?

Related Questions:

  1. How do we find the domain of a composition of functions in general?
  2. What are some other methods to simplify complex rational functions?
  3. How can we find the inverse of a composition of two functions?
  4. What is the graphical interpretation of composing two functions?
  5. How do we determine whether a composite function is increasing or decreasing?

Tip:

Always check the domain restrictions of both the inner and outer functions when finding the domain of a composite function!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Rational Functions
Domain Restrictions

Formulas

f(g(x)) = (18x - 45)/(x + 3)
g(f(x)) = (12x + 9)/(x + 9)

Theorems

Domain of Composite Functions
Simplification of Rational Expressions

Suitable Grade Level

Grades 11-12