Math Problem Statement

Find the exact value of the trigonometric expression without the use of a calculator: tan(4π/3 + 7π/4).

Solution

Let's solve the problem step by step.

Expression to Simplify:

Find the exact value of tan(4π3+7π4)\text{Find the exact value of } \tan\left(\frac{4\pi}{3} + \frac{7\pi}{4}\right)

We can apply the sum of angles identity for tangent: tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A) \tan(B)}

For A=4π3A = \frac{4\pi}{3} and B=7π4B = \frac{7\pi}{4}, let's first calculate the tangent values of each angle individually.

1. Calculate tan(4π3)\tan\left(\frac{4\pi}{3}\right):

4π3 is in the third quadrant (where tangent is positive). \frac{4\pi}{3}\text{ is in the third quadrant (where tangent is positive). } The reference angle is: 4π3π=π3\frac{4\pi}{3} - \pi = \frac{\pi}{3} Thus, tan(4π3)=tan(π3)=3\tan\left(\frac{4\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}

2. Calculate tan(7π4)\tan\left(\frac{7\pi}{4}\right):

7π4 is in the fourth quadrant (where tangent is negative). \frac{7\pi}{4}\text{ is in the fourth quadrant (where tangent is negative). } The reference angle is: 2π7π4=π42\pi - \frac{7\pi}{4} = \frac{\pi}{4} Thus, tan(7π4)=tan(π4)=1\tan\left(\frac{7\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1

3. Apply the sum of angles identity:

tan(4π3+7π4)=tan(4π3)+tan(7π4)1tan(4π3)tan(7π4)\tan\left(\frac{4\pi}{3} + \frac{7\pi}{4}\right) = \frac{\tan\left(\frac{4\pi}{3}\right) + \tan\left(\frac{7\pi}{4}\right)}{1 - \tan\left(\frac{4\pi}{3}\right) \cdot \tan\left(\frac{7\pi}{4}\right)} Substitute the values:

= \frac{\sqrt{3} - 1}{1 + \sqrt{3}}$$ This matches the form seen in option $$A$$ in the image. Therefore, the correct formula is: $$\boxed{A}$$ Would you like me to go further into any step? Here are some follow-up questions: 1. What is the tangent identity for the difference of angles? 2. How would you calculate the tangent of other angles like $$\frac{5\pi}{6}$$? 3. Can you explain how the reference angle helps simplify the trigonometric functions? 4. What is the sum of angles identity for sine and cosine? 5. How do the quadrants affect the signs of trigonometric functions? **Tip:** Always check the quadrant to determine the sign of the trigonometric value.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum of Angles Identity

Formulas

tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B))
tan(π/3) = √3
tan(π/4) = 1

Theorems

Sum of Angles Identity for Tangent

Suitable Grade Level

Grades 10-12