Math Problem Statement

Use the given conditions to find the exact values of sin(2u),cos(2u),and tan(2u) using the double angle formulas. Sin(u)= -4/5, 3pi/2<u<2pi

Solution

To find the exact values of sin(2u)\sin(2u), cos(2u)\cos(2u), and tan(2u)\tan(2u), we will use the double angle formulas for trigonometric functions. The given condition is:

  • sin(u)=45\sin(u) = -\frac{4}{5}
  • 3π2<u<2π\frac{3\pi}{2} < u < 2\pi, indicating that uu is in the fourth quadrant.

Step 1: Find cos(u)\cos(u)

We know the Pythagorean identity:

sin2(u)+cos2(u)=1\sin^2(u) + \cos^2(u) = 1

Substituting sin(u)=45\sin(u) = -\frac{4}{5}:

(45)2+cos2(u)=1\left(-\frac{4}{5}\right)^2 + \cos^2(u) = 1 1625+cos2(u)=1\frac{16}{25} + \cos^2(u) = 1 cos2(u)=11625=25251625=925\cos^2(u) = 1 - \frac{16}{25} = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} cos(u)=±35\cos(u) = \pm \frac{3}{5}

Since uu is in the fourth quadrant, where cos(u)\cos(u) is positive, we have:

cos(u)=35\cos(u) = \frac{3}{5}

Step 2: Use the Double Angle Formulas

The double angle formulas are:

sin(2u)=2sin(u)cos(u)\sin(2u) = 2\sin(u)\cos(u) cos(2u)=cos2(u)sin2(u)\cos(2u) = \cos^2(u) - \sin^2(u) tan(2u)=sin(2u)cos(2u)\tan(2u) = \frac{\sin(2u)}{\cos(2u)}

Step 3: Calculate sin(2u)\sin(2u), cos(2u)\cos(2u), and tan(2u)\tan(2u)

1. Find sin(2u)\sin(2u):

sin(2u)=2sin(u)cos(u)=2(45)(35)\sin(2u) = 2\sin(u)\cos(u) = 2\left(-\frac{4}{5}\right)\left(\frac{3}{5}\right) sin(2u)=2425\sin(2u) = -\frac{24}{25}

2. Find cos(2u)\cos(2u):

cos(2u)=cos2(u)sin2(u)=(35)2(45)2\cos(2u) = \cos^2(u) - \sin^2(u) = \left(\frac{3}{5}\right)^2 - \left(-\frac{4}{5}\right)^2 cos(2u)=9251625=725\cos(2u) = \frac{9}{25} - \frac{16}{25} = -\frac{7}{25}

3. Find tan(2u)\tan(2u):

tan(2u)=sin(2u)cos(2u)=2425725=247\tan(2u) = \frac{\sin(2u)}{\cos(2u)} = \frac{-\frac{24}{25}}{-\frac{7}{25}} = \frac{24}{7}

Final Answers:

sin(2u)=2425,cos(2u)=725,tan(2u)=247\sin(2u) = -\frac{24}{25}, \quad \cos(2u) = -\frac{7}{25}, \quad \tan(2u) = \frac{24}{7}

Would you like any further details or have additional questions about the steps? Here are some related questions for further practice:

  1. How do you derive the double angle formulas for trigonometric functions?
  2. What is the significance of the signs of trigonometric functions in different quadrants?
  3. How would you solve a similar problem if the given information was for cos(u)\cos(u) instead of sin(u)\sin(u)?
  4. How can the double angle formulas be used to simplify expressions involving trigonometric functions?
  5. Can you apply these formulas to find trigonometric values for half-angles (using half-angle identities)?

Tip: Always consider the quadrant when determining the signs of trigonometric functions—this can help you decide whether to use positive or negative values for sin(u)\sin(u), cos(u)\cos(u), and tan(u)\tan(u).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Double Angle Formulas
Pythagorean Identity

Formulas

sin(2u) = 2sin(u)cos(u)
cos(2u) = cos^2(u) - sin^2(u)
tan(2u) = sin(2u)/cos(2u)
sin^2(u) + cos^2(u) = 1

Theorems

Pythagorean Identity
Double Angle Formulas

Suitable Grade Level

Grades 11-12