Math Problem Statement

Use the figure to find the exat values of sin2u,cos2u,and tan2u.

Solution

Let's analyze the given figure and solve for sin(2u)\sin(2u), cos(2u)\cos(2u), and tan(2u)\tan(2u).

The figure shows a vector v\mathbf{v} with its terminal point at (1,2)(1, 2).

First, we need to determine the angle uu. To find uu, we will use the coordinates of the vector (1,2)(1, 2). The angle uu is the angle that the vector makes with the positive xx-axis.

The tangent of angle uu can be found using: tan(u)=oppositeadjacent=yx=21=2\tan(u) = \frac{\text{opposite}}{\text{adjacent}} = \frac{y}{x} = \frac{2}{1} = 2

To find uu: u=tan1(2)u = \tan^{-1}(2)

Now, we use double angle formulas to find sin(2u)\sin(2u), cos(2u)\cos(2u), and tan(2u)\tan(2u).

1. sin(2u)\sin(2u)

The double angle formula for sine is: sin(2u)=2sin(u)cos(u)\sin(2u) = 2 \sin(u) \cos(u)

First, we find sin(u)\sin(u) and cos(u)\cos(u):

Using the coordinates of the point (1,2)(1, 2): r=x2+y2=12+22=5r = \sqrt{x^2 + y^2} = \sqrt{1^2 + 2^2} = \sqrt{5}

sin(u)=yr=25=255\sin(u) = \frac{y}{r} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} cos(u)=xr=15=55\cos(u) = \frac{x}{r} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}

Now, substituting into the double angle formula for sine: sin(2u)=2sin(u)cos(u)=2(255)(55)\sin(2u) = 2 \sin(u) \cos(u) = 2 \left(\frac{2\sqrt{5}}{5}\right) \left(\frac{\sqrt{5}}{5}\right) sin(2u)=2(25555)\sin(2u) = 2 \left(\frac{2\sqrt{5}}{5} \cdot \frac{\sqrt{5}}{5}\right) sin(2u)=2(2525)\sin(2u) = 2 \left(\frac{2 \cdot 5}{25}\right) sin(2u)=2(25)\sin(2u) = 2 \left(\frac{2}{5}\right) sin(2u)=45\sin(2u) = \frac{4}{5}

2. cos(2u)\cos(2u)

The double angle formula for cosine is: cos(2u)=cos2(u)sin2(u)\cos(2u) = \cos^2(u) - \sin^2(u)

Using the values for cos(u)\cos(u) and sin(u)\sin(u): cos2(u)=(55)2=525=15\cos^2(u) = \left(\frac{\sqrt{5}}{5}\right)^2 = \frac{5}{25} = \frac{1}{5} sin2(u)=(255)2=4525=2025=45\sin^2(u) = \left(\frac{2\sqrt{5}}{5}\right)^2 = \frac{4 \cdot 5}{25} = \frac{20}{25} = \frac{4}{5}

Now, substituting into the double angle formula for cosine: cos(2u)=cos2(u)sin2(u)=1545\cos(2u) = \cos^2(u) - \sin^2(u) = \frac{1}{5} - \frac{4}{5} cos(2u)=145\cos(2u) = \frac{1 - 4}{5} cos(2u)=35\cos(2u) = -\frac{3}{5}

3. tan(2u)\tan(2u)

The double angle formula for tangent is: tan(2u)=2tan(u)1tan2(u)\tan(2u) = \frac{2 \tan(u)}{1 - \tan^2(u)}

Using tan(u)=2\tan(u) = 2: tan(2u)=22122\tan(2u) = \frac{2 \cdot 2}{1 - 2^2} tan(2u)=414\tan(2u) = \frac{4}{1 - 4} tan(2u)=43\tan(2u) = \frac{4}{-3} tan(2u)=43\tan(2u) = -\frac{4}{3}

So, the exact values are:

  • sin(2u)=45\sin(2u) = \frac{4}{5}
  • cos(2u)=35\cos(2u) = -\frac{3}{5}
  • tan(2u)=43\tan(2u) = -\frac{4}{3}

Would you like more details or have any questions about these calculations?

Here are 5 more questions you might find interesting:

  1. How do you derive the double angle formulas for sine and cosine?
  2. Can you explain the unit circle and its importance in trigonometry?
  3. What are the sum and difference formulas for sine, cosine, and tangent?
  4. How do you convert between degrees and radians?
  5. What is the Pythagorean identity in trigonometry?

Tip: When working with trigonometric functions, always make sure to check if you need to work in degrees or radians to avoid errors in calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Double angle formulas
Coordinate geometry

Formulas

Double angle formulas for sine, cosine, and tangent

Theorems

-

Suitable Grade Level

High school