Math Problem Statement

Question content area top Part 1 Find the exact value of the expression. Do not use a calculator. secant left parenthesis StartFraction pi Over 3 EndFraction right parenthesis plus 4 cosecant left parenthesis StartFraction pi Over 6 EndFraction right parenthesis Question content area bottom Part 1 secant left parenthesis StartFraction pi Over 3 EndFraction right parenthesis plus 4 cosecant left parenthesis StartFraction pi Over 6 EndFraction right parenthesis equals

enter your response here ​(Type an exact​ answer, using radicals as needed. Use integers or fractions for any numbers in the expression. Simplify your​ answer.)

Solution

To solve the expression sec(π3)+4csc(π6)\sec\left(\frac{\pi}{3}\right) + 4 \csc\left(\frac{\pi}{6}\right), let’s evaluate each trigonometric function separately.

Step 1: Evaluate sec(π3)\sec\left(\frac{\pi}{3}\right)

  1. Recall that sec(x)=1cos(x)\sec(x) = \frac{1}{\cos(x)}.
  2. We know that cos(π3)=12\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.
  3. Therefore, sec(π3)=112=2\sec\left(\frac{\pi}{3}\right) = \frac{1}{\frac{1}{2}} = 2.

So, sec(π3)=2\sec\left(\frac{\pi}{3}\right) = 2.

Step 2: Evaluate csc(π6)\csc\left(\frac{\pi}{6}\right)

  1. Recall that csc(x)=1sin(x)\csc(x) = \frac{1}{\sin(x)}.
  2. We know that sin(π6)=12\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}.
  3. Therefore, csc(π6)=112=2\csc\left(\frac{\pi}{6}\right) = \frac{1}{\frac{1}{2}} = 2.

So, csc(π6)=2\csc\left(\frac{\pi}{6}\right) = 2.

Step 3: Substitute and Simplify

Now we can substitute these values back into the expression: sec(π3)+4csc(π6)=2+42=2+8=10\sec\left(\frac{\pi}{3}\right) + 4 \csc\left(\frac{\pi}{6}\right) = 2 + 4 \cdot 2 = 2 + 8 = 10

Final Answer

sec(π3)+4csc(π6)=10\sec\left(\frac{\pi}{3}\right) + 4 \csc\left(\frac{\pi}{6}\right) = 10

Let me know if you’d like more details or have any questions.


  1. What is the secant function, and how is it related to cosine?
  2. How does the cosecant function relate to sine?
  3. Why is π3\frac{\pi}{3} associated with certain trigonometric values?
  4. How can similar steps be applied to other trigonometric functions?
  5. What are exact trigonometric values, and why do they matter?

Tip: Memorizing key trigonometric values for standard angles can greatly speed up calculations without a calculator.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Exact Trigonometric Values

Formulas

sec(x) = 1/cos(x)
csc(x) = 1/sin(x)

Theorems

Exact values of trigonometric functions for common angles (π/3 and π/6)

Suitable Grade Level

Grades 9-12