Math Problem Statement

Find the eigenvector of the matrix [1 0 0; 3 -2 0; 2 3 4] corresponding to the eigenvalue 4.

Solution

To find the eigenvector corresponding to the eigenvalue λ=4\lambda = 4 for the matrix:

[100320234]\begin{bmatrix} 1 & 0 & 0 \\ 3 & -2 & 0 \\ 2 & 3 & 4 \end{bmatrix}

we'll proceed as follows:

Step 1: Set Up the Equation

To find the eigenvector, we need to solve: (A4I)x=0(A - 4I)\mathbf{x} = 0 where AA is the given matrix and II is the identity matrix of the same dimension.

The matrix 4I4I is: 4I=[400040004]4I = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}

Now, calculate A4IA - 4I: A4I=[140032402344]=[300360230]A - 4I = \begin{bmatrix} 1 - 4 & 0 & 0 \\ 3 & -2 - 4 & 0 \\ 2 & 3 & 4 - 4 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -6 & 0 \\ 2 & 3 & 0 \end{bmatrix}

Step 2: Solve (A4I)x=0(A - 4I)\mathbf{x} = 0

We now need to solve the following system: [300360230][x1x2x3]=[000]\begin{bmatrix} -3 & 0 & 0 \\ 3 & -6 & 0 \\ 2 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

This system gives us three equations:

  1. 3x1=0x1=0-3x_1 = 0 \Rightarrow x_1 = 0
  2. 3x16x2=06x2=0x2=03x_1 - 6x_2 = 0 \Rightarrow -6x_2 = 0 \Rightarrow x_2 = 0
  3. 2x1+3x2=0x32x_1 + 3x_2 = 0 \Rightarrow x_3 can be any value (let x3=1x_3 = -1).

Thus, a corresponding eigenvector is: [ \mathbf{x} = \begin{bmatrix}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues and Eigenvectors

Formulas

(A - λI)x = 0

Theorems

Eigenvalue and Eigenvector Theory

Suitable Grade Level

College Level