Math Problem Statement

Tentukan nilai eigen dan basis untuk ruang eigen dari matriks

Tentukan nilai eigen dan basis untuk ruang eigen dari matriks

Solution

To solve the problem and determine the eigenvalues and eigenvectors (basis for the eigenspaces) of the given matrix AA, we proceed as follows:

Matrix:

1 & 0 & -2 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{pmatrix}$$ ### Steps: 1. **Find Eigenvalues**: Solve the characteristic equation: $$\det(A - \lambda I) = 0$$ where $$I$$ is the identity matrix and $$\lambda$$ is the eigenvalue. 2. **Find Eigenvectors**: For each eigenvalue $$\lambda$$, solve the equation: $$(A - \lambda I)x = 0$$ to find Matrix([[1, 0, -2], [0, 1, 2], [-1, 0, 0]]) # Define the variable for eigenvalues λ = symbols('λ') # Compute the characteristic polynomial char_poly = (A - λ * eye(3)).det() # Solve for eigenvalues eigenvalues = solve(char_poly, λ) # Compute eigenvectors for each eigenvalue eigenvectors = {} for eigenvalue in eigenvalues: eig_space = (A - eigenvalue * eye(3)).nullspace() eigenvectors[eigen### Results: 1. **Eigenvalues**: $$\lambda_1 = -1, \, \lambda_2 = 1, \, \lambda_3 = 2$$ 2. **Eigenvectors (Basis for Eigenspaces)**: - For $$\lambda = -1$$: The eigenvector is: $$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$ - For $$\lambda = 1$$: The eigenvector is: $$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$ - For $$\lambda = 2$$: The eigenvector is: $$\begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}$$ Let me know if you'd like further clarification or detailed steps! ### Related Questions: 1. How is the characteristic polynomial derived for a matrix? 2. What is the geometric interpretation of eigenvalues and eigenvectors? 3. How are eigenspaces defined and what is their significance? 4. Can eigenvalues of a matrix be complex numbers? 5. How does the rank of the matrix affect the eigenspaces? ### Tip: Always check

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Eigenvectors
Matrix Algebra

Formulas

Characteristic equation: det(A - λI) = 0
Eigenvector equation: (A - λI)x = 0

Theorems

Eigenvalue and Eigenvector Theorem
Determinant Property for Eigenvalues

Suitable Grade Level

University Level (Undergraduate)