Math Problem Statement

kerjakan

Tentukan f'(y) dari: y = 3x^4 + x^3, y = πx^7 - 2x^5 - 5x^(-2), y = 3/x^3 + x^(-4), y = (x^2 + 17)(x^3 - 3x + 1), y = (5x^2 + 2x - 6)/(3x - 1), y = 2/(3x) - 2/3

Solution

from PIL import Image import pytesseract

Load the image to process it

image_path = '/mnt/data/1732374422358vxbrdzxf.jpg' text_from_image = pytesseract.image_to_string(Image.open(image_path), lang='eng')

text_from_image'Tugas 6\nFRSO01 - Kalkulus |\n\n1. Tentukan f(y) dari:\n\na.y =3x44+x3\n\nd.y = (x? + 17)(x3 — 3x41)\n\nb. mx? — 2x5 — 5x7?\n\ne.\n\nSx242x-6\n3x-1\n\n''Tugas 6\nFRSO01 - Kalkulus |\n\n1. Tentukan f(y) dari:\n\na.y =3x44+x3\n\nd.y = (x? + 17)(x3 — 3x41)\n\nb. mx? — 2x5 — 5x7?\n\ne.\n\nSx242x-6\n3x-1\n\n'successThe text extracted from the image appears as follows:


Tugas 6
FRS001 - Kalkulus I

  1. Tentukan f(y)f'(y) dari:

a. y=3x4+x3y = 3x^4 + x^3
b. y=πx72x55x2y = \pi x^7 - 2x^5 - 5x^{-2}
c. y=3x3+x4y = \frac{3}{x^3} + x^{-4}
d. y=(x2+17)(x33x+1)y = (x^2 + 17)(x^3 - 3x + 1)
e. y=5x2+2x63x1y = \frac{5x^2 + 2x - 6}{3x - 1}
f. y=23x23y = \frac{2}{3x} - \frac{2}{3}


Let me compute the derivatives f(y)f'(y) for all the given functions.from sympy import symbols, diff, pi

Define the variable

x = symbols('x')

Define each function and compute its derivative

functions = { "a": 3x4 + x3, "b": pix7 - 2*x5 - 5x**(-2), "c": 3/x3 + x(-4), "d": (x2 + 17) * (x3 - 3x + 1), "e": (5x**2 + 2x - 6) / (3x - 1), "f": (2 / (3x)) - (2 / 3), }

Calculate derivatives

derivatives = {key: diff(func, x) for key, func in functions.items()}

derivatives{'a': 12x**3 + 3x2, 'b': 7pix6 - 10x4 + 10/x3, 'c': -9/x4 - 4/x5, 'd': 2x*(x3 - 3*x + 1) + (x2 + 17)(3x2 - 3), 'e': (10x + 2)/(3x - 1) - 3*(5*x2 + 2x - 6)/(3x - 1)2, 'f': -2/(3*x2)}{'a': 12x**3 + 3x2, 'b': 7pix6 - 10x4 + 10/x3, 'c': -9/x4 - 4/x5, 'd': 2x*(x3 - 3*x + 1) + (x2 + 17)(3x2 - 3), 'e': (10x + 2)/(3x - 1) - 3*(5*x2 + 2x - 6)/(3x - 1)2, 'f': -2/(3*x2)}successHere are the derivatives f(y)f'(y) for the given functions:

a. y=3x4+x3y = 3x^4 + x^3:
f(y)=12x3+3x2f'(y) = 12x^3 + 3x^2

b. y=πx72x55x2y = \pi x^7 - 2x^5 - 5x^{-2}:
f(y)=7πx610x4+10x3f'(y) = 7\pi x^6 - 10x^4 + \frac{10}{x^3}

c. y=3x3+x4y = \frac{3}{x^3} + x^{-4}:
f(y)=9x44x5f'(y) = -\frac{9}{x^4} - \frac{4}{x^5}

d. y=(x2+17)(x33x+1)y = (x^2 + 17)(x^3 - 3x + 1):
f(y)=2x(x33x+1)+(x2+17)(3x23)f'(y) = 2x(x^3 - 3x + 1) + (x^2 + 17)(3x^2 - 3)

e. y=5x2+2x63x1y = \frac{5x^2 + 2x - 6}{3x - 1}:
f(y)=10x+23x13(5x2+2x6)(3x1)2f'(y) = \frac{10x + 2}{3x - 1} - \frac{3(5x^2 + 2x - 6)}{(3x - 1)^2}

f. y=23x23y = \frac{2}{3x} - \frac{2}{3}:
f(y)=23x2f'(y) = -\frac{2}{3x^2}

Let me know if you'd like detailed simplifications or further explanations for any of these steps!

Here are some related questions to expand your understanding:

  1. How is the product rule applied in problem (d)?
  2. What is the significance of negative exponents in problem (c)?
  3. How can the quotient rule be used for rational functions like in problem (e)?
  4. What happens to the derivative of a constant term, like 23-\frac{2}{3} in problem (f)?
  5. How does the chain rule apply to functions involving nested powers?

Tip: Always double-check your algebraic simplifications when applying differentiation rules, especially for product and quotient rules.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Polynomial Functions
Rational Functions
Product Rule
Quotient Rule
Power Rule

Formulas

Power Rule: d/dx [x^n] = n * x^(n-1)
Product Rule: d/dx [uv] = u'v + uv'
Quotient Rule: d/dx [u/v] = (u'v - uv') / v^2

Theorems

Basic Differentiation Rules
Properties of Derivatives

Suitable Grade Level

University Level (Calculus I)