Math Problem Statement

If h(x)=(x−x2)(2x2−x3) then h′(x) is -------------

Solution

To find the derivative h(x)h'(x) of the function h(x)=(xx2)(2x2x3)h(x) = (x - x^2)(2x^2 - x^3), we can apply the product rule. The product rule states that if h(x)=f(x)g(x)h(x) = f(x) \cdot g(x), then:

h(x)=f(x)g(x)+f(x)g(x).h'(x) = f'(x)g(x) + f(x)g'(x).

In this case, let's define: f(x)=xx2,g(x)=2x2x3.f(x) = x - x^2, \quad g(x) = 2x^2 - x^3.

Step 1: Find f(x)f'(x) and g(x)g'(x)

  1. Compute f(x)f'(x): f(x)=xx2    f(x)=12x.f(x) = x - x^2 \implies f'(x) = 1 - 2x.

  2. Compute g(x)g'(x): g(x)=2x2x3    g(x)=4x3x2.g(x) = 2x^2 - x^3 \implies g'(x) = 4x - 3x^2.

Step 2: Apply the product rule

Using the product rule, we have: h(x)=f(x)g(x)+f(x)g(x).h'(x) = f'(x)g(x) + f(x)g'(x).

Substitute f(x),f(x),g(x),f(x), f'(x), g(x), and g(x)g'(x) into the equation:

h(x)=(12x)(2x2x3)+(xx2)(4x3x2).h'(x) = (1 - 2x)(2x^2 - x^3) + (x - x^2)(4x - 3x^2).

Step 3: Simplify the expression

Let's expand each term:

  1. Expand f(x)g(x)f'(x)g(x): (12x)(2x2x3)=(1)(2x2x3)+(2x)(2x2x3).(1 - 2x)(2x^2 - x^3) = (1)(2x^2 - x^3) + (-2x)(2x^2 - x^3). =2x2x34x3+2x4.= 2x^2 - x^3 - 4x^3 + 2x^4. =2x25x3+2x4.= 2x^2 - 5x^3 + 2x^4.

  2. Expand f(x)g(x)f(x)g'(x): (xx2)(4x3x2)=(x)(4x3x2)+(x2)(4x3x2).(x - x^2)(4x - 3x^2) = (x)(4x - 3x^2) + (-x^2)(4x - 3x^2). =4x23x34x3+3x4.= 4x^2 - 3x^3 - 4x^3 + 3x^4. =4x27x3+3x4.= 4x^2 - 7x^3 + 3x^4.

Step 4: Combine like terms

Now combine both expressions:

h(x)=(2x25x3+2x4)+(4x27x3+3x4).h'(x) = (2x^2 - 5x^3 + 2x^4) + (4x^2 - 7x^3 + 3x^4).

Combine like terms:

h(x)=(2x2+4x2)+(5x37x3)+(2x4+3x4).h'(x) = (2x^2 + 4x^2) + (-5x^3 - 7x^3) + (2x^4 + 3x^4). h(x)=6x212x3+5x4.h'(x) = 6x^2 - 12x^3 + 5x^4.

Final Answer

h(x)=5x412x3+6x2.\boxed{h'(x) = 5x^4 - 12x^3 + 6x^2.}

Would you like more details on this problem or have any questions?

Here are 5 related questions for further exploration:

  1. How would you find the second derivative h(x)h''(x) of the function h(x)h(x)?
  2. What are the critical points of the function h(x)h(x)?
  3. Can you determine the intervals where h(x)h(x) is increasing or decreasing?
  4. How can you find the inflection points of h(x)h(x)?
  5. What would the graph of h(x)h(x) look like, and where would it have local maxima or minima?

Tip: When dealing with derivatives of products of functions, always consider using the product rule for a structured approach.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Derivatives
Product Rule

Formulas

Product rule for differentiation

Theorems

-

Suitable Grade Level

Advanced High School / College