Math Problem Statement

Dapatkan koordinat semua titik P pada sumbu-x sehingga garis yang melalui A(1, 2) dan P tegak lurus ke garis yang melalui B(8, 3) dan P. Dapatkan kemiringan garis dan perpotongannya dengan sumbu-y dari persamaan linear berikut ini.

Solution

Let's work through the mathematical problems shown in the image step by step:

Question 5:

Dapatkan koordinat semua titik PP pada sumbu-xx sehingga garis yang melalui A(1,2)A(1, 2) dan PP tegak lurus ke garis yang melalui B(8,3)B(8, 3) dan PP.

This question asks to find the coordinates of points PP on the x-axis such that the line through A(1,2)A(1, 2) and PP is perpendicular to the line through B(8,3)B(8, 3) and PP.

  1. Coordinates of PP on the x-axis: Since PP lies on the x-axis, its coordinates are P(p,0)P(p, 0).

  2. Slope of line APAP: The slope of the line passing through points A(1,2)A(1, 2) and P(p,0)P(p, 0) is: mAP=02p1=2p1m_{AP} = \frac{0 - 2}{p - 1} = \frac{-2}{p - 1}

  3. Slope of line BPBP: The slope of the line passing through points B(8,3)B(8, 3) and P(p,0)P(p, 0) is: mBP=03p8=3p8m_{BP} = \frac{0 - 3}{p - 8} = \frac{-3}{p - 8}

  4. Perpendicular lines: For two lines to be perpendicular, the product of their slopes must be 1-1: mAPmBP=1m_{AP} \cdot m_{BP} = -1 Substituting the slopes: 2p13p8=1\frac{-2}{p - 1} \cdot \frac{-3}{p - 8} = -1 Simplifying: 6(p1)(p8)=1\frac{6}{(p - 1)(p - 8)} = -1 Multiply both sides by (p1)(p8)(p - 1)(p - 8): 6=(p1)(p8)6 = -(p - 1)(p - 8) Expanding the right-hand side: 6=(p29p+8)6 = -(p^2 - 9p + 8) Rearranging the equation: p29p+14=0p^2 - 9p + 14 = 0 Solve using the quadratic formula: p=(9)±(9)24(1)(14)2(1)=9±81562=9±252p = \frac{-(-9) \pm \sqrt{(-9)^2 - 4(1)(14)}}{2(1)} = \frac{9 \pm \sqrt{81 - 56}}{2} = \frac{9 \pm \sqrt{25}}{2} p=9±52p = \frac{9 \pm 5}{2} Therefore: p=9+52=7orp=952=2p = \frac{9 + 5}{2} = 7 \quad \text{or} \quad p = \frac{9 - 5}{2} = 2

    So, the possible coordinates of PP are (7,0)(7, 0) and (2,0)(2, 0).


Question 6:

Dapatkan kemiringan garis dan perpotongannya dengan sumbu-yy dari persamaan linear berikut:

(a) 3x4y=123x - 4y = 12

  1. Rearrange into slope-intercept form y=mx+cy = mx + c: 4y=3x+12y=34x3-4y = -3x + 12 \quad \Rightarrow \quad y = \frac{3}{4}x - 3 Slope m=34m = \frac{3}{4}, y-intercept c=3c = -3.

(b) x3+y4=1\frac{x}{3} + \frac{y}{4} = 1

  1. Rearrange into slope-intercept form y=mx+cy = mx + c: y4=x3+1y=43x+4\frac{y}{4} = -\frac{x}{3} + 1 \quad \Rightarrow \quad y = -\frac{4}{3}x + 4 Slope m=43m = -\frac{4}{3}, y-intercept c=4c = 4.

(c) px+qy+r=0px + qy + r = 0 where q0q \neq 0

  1. Rearrange into slope-intercept form y=mx+cy = mx + c: qy=pxry=pqxrqqy = -px - r \quad \Rightarrow \quad y = -\frac{p}{q}x - \frac{r}{q} Slope m=pqm = -\frac{p}{q}, y-intercept c=rqc = -\frac{r}{q}.

(d) y=413xy = 4 - \frac{1}{3}x

This is already in slope-intercept form y=mx+cy = mx + c.

  • Slope m=13m = -\frac{1}{3}
  • y-intercept c=4c = 4

Would you like further explanation on any of these problems or the next questions? Here are 5 related questions to expand on:

  1. How do we determine the equation of a line perpendicular to a given line?
  2. Can you explain how to use the quadratic formula step by step?
  3. What is the relationship between slopes of parallel lines?
  4. How can we convert a general form equation to slope-intercept form?
  5. What is the geometric interpretation of a slope and intercept?

Tip: When solving for the intersection of two lines, you can set the equations equal to each other and solve for the variables to find the point of intersection.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Equations
Slopes and Intercepts
Quadratic Formula

Formulas

Slope formula: m = (y2 - y1) / (x2 - x1)
Perpendicular lines: m1 * m2 = -1
Quadratic formula: p = [-b ± sqrt(b² - 4ac)] / 2a

Theorems

Properties of perpendicular lines
Quadratic formula

Suitable Grade Level

Grades 9-11