Math Problem Statement
montrer que le polynôme : ((X^2 − 1)n)^(n) est scindé à racines simples sur R.
Solution
Pour montrer que le polynôme est scindé à racines simples sur , suivons une démarche méthodique.
Étape 1 : Simplification du polynôme
- On commence par réécrire le polynôme : [
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Polynomials
Real Analysis
Formulas
P(X) = ((X^2 - 1)^n)^n
Theorems
Factorization of polynomials
Roots of polynomials in real numbers
Suitable Grade Level
Grades 11-12
Related Recommendation
Proof of Real, Simple Roots in the nth Derivative of (x^2 - 1)^n
Expand (x^2 - 1)^n Using Binomial Theorem | Detailed Solution
Differentiate (x^2 - 1)^n with Respect to x - Step-by-Step Guide
Understanding Factoring in Algebra: Why Factor Out 3^(2n-1)?
Binomial Expansion of ((1-x)/(1+x))^n Up to x^2 Term