Math Problem Statement

f(x,y)=4(x-y)-x^2-y^2的极值问题

Solution

要研究函数 f(x,y)=4(xy)x2y2f(x, y) = 4(x - y) - x^2 - y^2 的极值问题,可以按照以下步骤进行:


1. 求偏导数

f(x,y)f(x, y) 分别对 xxyy 求偏导数:

fx=fx=42xf_x = \frac{\partial f}{\partial x} = 4 - 2x fy=fy=42yf_y = \frac{\partial f}{\partial y} = -4 - 2y


2. 设偏导数为零,解方程组

fx=0f_x = 0fy=0f_y = 042x=042y=04 - 2x = 0 \quad \text{和} \quad -4 - 2y = 0

解得: x=2,y=2x = 2, \quad y = -2

因此,函数在点 (2,2)(2, -2) 处可能存在极值。


3. 判断极值性质

构造二阶偏导数:

fxx=2fx2=2,fyy=2fy2=2,fxy=2fxy=0f_{xx} = \frac{\partial^2 f}{\partial x^2} = -2, \quad f_{yy} = \frac{\partial^2 f}{\partial y^2} = -2, \quad f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = 0

计算 判别式 DDD=fxxfyy(fxy)2=(2)(2)(0)2=4D = f_{xx}f_{yy} - (f_{xy})^2 = (-2)(-2) - (0)^2 = 4

因为 D>0D > 0fxx<0f_{xx} < 0,所以函数在 (2,2)(2, -2) 处有 局部最大值


4. 求极值点处的函数值

(2,2)(2, -2) 代入原函数 f(x,y)f(x, y)f(2,2)=4(2(2))22(2)2=4444=168=8f(2, -2) = 4(2 - (-2)) - 2^2 - (-2)^2 = 4 \cdot 4 - 4 - 4 = 16 - 8 = 8

因此,函数在点 (2,2)(2, -2) 处取得极大值 88


最终结论:

函数 f(x,y)=4(xy)x2y2f(x, y) = 4(x - y) - x^2 - y^2 在点 (2,2)(2, -2) 处有局部最大值,最大值为 88


拓展问题:

  1. 如何计算更多变量函数的极值点?
  2. 为什么判别式 DD 能够判断极值性质?
  3. 是否可以通过拉格朗日乘数法来处理约束优化问题?
  4. 如果添加约束 g(x,y)=0g(x, y) = 0,该如何求解?
  5. 如何通过图形化方式分析函数的极值?

小提示:验证极值时,利用二阶导数法可以高效判断,但对于边界问题要单独分析。

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Partial Derivatives
Critical Points
Extrema Analysis

Formulas

Partial derivatives: f_x = ∂f/∂x, f_y = ∂f/∂y
Second-order partial derivatives: f_xx, f_yy, f_xy
Discriminant for extrema: D = f_xx * f_yy - (f_xy)^2

Theorems

Second Partial Derivative Test

Suitable Grade Level

Undergraduate Mathematics (Calculus Level)