Math Problem Statement

1.      Nilai ekstrim (minimum dan maksimum) dari f(x,y)=x2+y2f(x,y)= x^2+y^2 dengan kendala g(x,y)=x+4y17=0g(x,y)=x+4y-17=0   adalah...

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Optimization
Lagrange Multiplier
Quadratic Functions
Constrained Optimization

Formulas

Lagrange Function: 𝓛(x, y, λ) = f(x, y) - λg(x, y)
Partial Derivatives: ∂𝓛/∂x, ∂𝓛/∂y, ∂𝓛/∂λ
Quadratic function: f(x, y) = x^2 + y^2
Constraint equation: g(x, y) = x + 4y - 17 = 0

Theorems

Lagrange Multiplier Method

Suitable Grade Level

Undergraduate Mathematics (First Year)