Math Problem Statement

Suppose that π‘=log𝑏⁑(3), π‘ž=log𝑏⁑(6), and π‘Ÿ=log𝑏⁑(10). Express the following logarithmic expressions in terms of π‘, π‘ž, and π‘Ÿ. logb(972), logb(27000b^2), logb(.02)

Solution

We are given the following:

p=log⁑b(3),q=log⁑b(6),r=log⁑b(10)p = \log_b(3), \quad q = \log_b(6), \quad r = \log_b(10)

We are asked to express the following logarithmic expressions in terms of pp, qq, and rr.


1. log⁑b(972)\log_b(972)

Start by factoring 972972:

972=22Γ—35972 = 2^2 \times 3^5

Now use the logarithmic property:

log⁑b(972)=log⁑b(22Γ—35)=log⁑b(22)+log⁑b(35)\log_b(972) = \log_b(2^2 \times 3^5) = \log_b(2^2) + \log_b(3^5)

Apply the power rule log⁑b(an)=nlog⁑b(a)\log_b(a^n) = n \log_b(a):

log⁑b(972)=2log⁑b(2)+5log⁑b(3)\log_b(972) = 2 \log_b(2) + 5 \log_b(3)

Next, express log⁑b(2)\log_b(2) and log⁑b(3)\log_b(3) in terms of pp, qq, and rr. We know that q=log⁑b(6)=log⁑b(2Γ—3)=log⁑b(2)+log⁑b(3)q = \log_b(6) = \log_b(2 \times 3) = \log_b(2) + \log_b(3), so:

log⁑b(2)=qβˆ’p\log_b(2) = q - p

Thus:

log⁑b(972)=2(qβˆ’p)+5p=2qβˆ’2p+5p=2q+3p\log_b(972) = 2(q - p) + 5p = 2q - 2p + 5p = 2q + 3p


2. log⁑b(27000b2)\log_b(27000b^2)

Start by factoring 2700027000:

27000=23Γ—33Γ—5327000 = 2^3 \times 3^3 \times 5^3

Now use the logarithmic property:

log⁑b(27000b2)=log⁑b(23Γ—33Γ—53Γ—b2)\log_b(27000b^2) = \log_b(2^3 \times 3^3 \times 5^3 \times b^2)

This can be rewritten as:

log⁑b(27000b2)=log⁑b(23)+log⁑b(33)+log⁑b(53)+log⁑b(b2)\log_b(27000b^2) = \log_b(2^3) + \log_b(3^3) + \log_b(5^3) + \log_b(b^2)

Apply the power rule:

log⁑b(27000b2)=3log⁑b(2)+3log⁑b(3)+3log⁑b(5)+2log⁑b(b)\log_b(27000b^2) = 3\log_b(2) + 3\log_b(3) + 3\log_b(5) + 2\log_b(b)

We know log⁑b(b)=1\log_b(b) = 1, so this simplifies to:

log⁑b(27000b2)=3log⁑b(2)+3log⁑b(3)+3log⁑b(5)+2\log_b(27000b^2) = 3\log_b(2) + 3\log_b(3) + 3\log_b(5) + 2

Next, express log⁑b(2)\log_b(2), log⁑b(3)\log_b(3), and log⁑b(5)\log_b(5) in terms of pp, qq, and rr. We know log⁑b(5)=rβˆ’p\log_b(5) = r - p, and log⁑b(2)=qβˆ’p\log_b(2) = q - p, so:

log⁑b(27000b2)=3(qβˆ’p)+3p+3(rβˆ’p)+2\log_b(27000b^2) = 3(q - p) + 3p + 3(r - p) + 2

Simplify:

log⁑b(27000b2)=3qβˆ’3p+3p+3rβˆ’3p+2=3q+3rβˆ’3p+2\log_b(27000b^2) = 3q - 3p + 3p + 3r - 3p + 2 = 3q + 3r - 3p + 2


3. log⁑b(0.02)\log_b(0.02)

We know that 0.02=150=12Γ—520.02 = \frac{1}{50} = \frac{1}{2 \times 5^2}, so:

log⁑b(0.02)=log⁑b(12Γ—52)\log_b(0.02) = \log_b\left( \frac{1}{2 \times 5^2} \right)

Using the logarithmic rule log⁑b(1x)=βˆ’log⁑b(x)\log_b\left( \frac{1}{x} \right) = -\log_b(x):

log⁑b(0.02)=βˆ’log⁑b(2Γ—52)=βˆ’(log⁑b(2)+log⁑b(52))\log_b(0.02) = -\log_b(2 \times 5^2) = -(\log_b(2) + \log_b(5^2))

Apply the power rule:

log⁑b(0.02)=βˆ’(log⁑b(2)+2log⁑b(5))\log_b(0.02) = -(\log_b(2) + 2\log_b(5))

Now express log⁑b(2)\log_b(2) and log⁑b(5)\log_b(5) in terms of pp, qq, and rr:

log⁑b(0.02)=βˆ’(qβˆ’p+2(rβˆ’p))=βˆ’(qβˆ’p+2rβˆ’2p)=βˆ’(q+2rβˆ’3p)\log_b(0.02) = -(q - p + 2(r - p)) = -(q - p + 2r - 2p) = -(q + 2r - 3p)

So:

log⁑b(0.02)=βˆ’qβˆ’2r+3p\log_b(0.02) = -q - 2r + 3p


Summary of Results:

  1. log⁑b(972)=2q+3p\log_b(972) = 2q + 3p
  2. log⁑b(27000b2)=3q+3rβˆ’3p+2\log_b(27000b^2) = 3q + 3r - 3p + 2
  3. log⁑b(0.02)=βˆ’qβˆ’2r+3p\log_b(0.02) = -q - 2r + 3p

Do you want further clarification or details on any of these steps?


Related Questions:

  1. How do logarithmic identities help in simplifying logarithmic expressions?
  2. Can you express log⁑b(54)\log_b(54) in terms of pp, qq, and rr?
  3. What are the properties of logarithms, and how can they be applied to solve complex expressions?
  4. How does the change of base formula affect logarithmic expressions?
  5. Can you calculate log⁑b(20)\log_b(20) using the known values of pp, qq, and rr?

Tip: When working with logarithms, always look for opportunities to apply properties like the product, quotient, and power rules to simplify the expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Logarithmic Properties
Algebra

Formulas

log_b(a^n) = n * log_b(a)
log_b(a * c) = log_b(a) + log_b(c)
log_b(1/a) = -log_b(a)

Theorems

Product Rule of Logarithms
Power Rule of Logarithms
Quotient Rule of Logarithms

Suitable Grade Level

Grades 10-12