We are given the following:
p=logbβ(3),q=logbβ(6),r=logbβ(10)
We are asked to express the following logarithmic expressions in terms of p, q, and r.
1. logbβ(972)
Start by factoring 972:
972=22Γ35
Now use the logarithmic property:
logbβ(972)=logbβ(22Γ35)=logbβ(22)+logbβ(35)
Apply the power rule logbβ(an)=nlogbβ(a):
logbβ(972)=2logbβ(2)+5logbβ(3)
Next, express logbβ(2) and logbβ(3) in terms of p, q, and r. We know that q=logbβ(6)=logbβ(2Γ3)=logbβ(2)+logbβ(3), so:
logbβ(2)=qβp
Thus:
logbβ(972)=2(qβp)+5p=2qβ2p+5p=2q+3p
2. logbβ(27000b2)
Start by factoring 27000:
27000=23Γ33Γ53
Now use the logarithmic property:
logbβ(27000b2)=logbβ(23Γ33Γ53Γb2)
This can be rewritten as:
logbβ(27000b2)=logbβ(23)+logbβ(33)+logbβ(53)+logbβ(b2)
Apply the power rule:
logbβ(27000b2)=3logbβ(2)+3logbβ(3)+3logbβ(5)+2logbβ(b)
We know logbβ(b)=1, so this simplifies to:
logbβ(27000b2)=3logbβ(2)+3logbβ(3)+3logbβ(5)+2
Next, express logbβ(2), logbβ(3), and logbβ(5) in terms of p, q, and r. We know logbβ(5)=rβp, and logbβ(2)=qβp, so:
logbβ(27000b2)=3(qβp)+3p+3(rβp)+2
Simplify:
logbβ(27000b2)=3qβ3p+3p+3rβ3p+2=3q+3rβ3p+2
3. logbβ(0.02)
We know that 0.02=501β=2Γ521β, so:
logbβ(0.02)=logbβ(2Γ521β)
Using the logarithmic rule logbβ(x1β)=βlogbβ(x):
logbβ(0.02)=βlogbβ(2Γ52)=β(logbβ(2)+logbβ(52))
Apply the power rule:
logbβ(0.02)=β(logbβ(2)+2logbβ(5))
Now express logbβ(2) and logbβ(5) in terms of p, q, and r:
logbβ(0.02)=β(qβp+2(rβp))=β(qβp+2rβ2p)=β(q+2rβ3p)
So:
logbβ(0.02)=βqβ2r+3p
Summary of Results:
- logbβ(972)=2q+3p
- logbβ(27000b2)=3q+3rβ3p+2
- logbβ(0.02)=βqβ2r+3p
Do you want further clarification or details on any of these steps?
Related Questions:
- How do logarithmic identities help in simplifying logarithmic expressions?
- Can you express logbβ(54) in terms of p, q, and r?
- What are the properties of logarithms, and how can they be applied to solve complex expressions?
- How does the change of base formula affect logarithmic expressions?
- Can you calculate logbβ(20) using the known values of p, q, and r?
Tip: When working with logarithms, always look for opportunities to apply properties like the product, quotient, and power rules to simplify the expressions.