Math Problem Statement

If psi(x) = tan x find psi(pi / 6) psi(x - 1/2 * pi) psi(- x) and express psi(2x) as a function of psi(x) pm

Solution

Given that ψ(x)=tan(x)\psi(x) = \tan(x), let's solve each part of the problem.

1. ψ(π6)\psi\left(\frac{\pi}{6}\right)

ψ(π6)=tan(π6)=13\psi\left(\frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}

2. ψ(xπ2)\psi\left(x - \frac{\pi}{2}\right)

Using the trigonometric identity tan(xπ2)=cot(x)\tan(x - \frac{\pi}{2}) = -\cot(x): ψ(xπ2)=tan(xπ2)=cot(x)\psi\left(x - \frac{\pi}{2}\right) = \tan\left(x - \frac{\pi}{2}\right) = -\cot(x)

3. ψ(x)\psi(-x)

Using the odd property of the tangent function tan(x)=tan(x)\tan(-x) = -\tan(x): [ \psi(-x) = \tan(-

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry

Formulas

\( \tan(x) \)

Theorems

Trigonometric identities

Suitable Grade Level

Advanced High School