Math Problem Statement

If psi(x) = tan x find psi(pi / 6) psi(x - 1/2 * pi) psi(- x) and express psi(2x) as a function of psi(x)

Solution

Given the function ψ(x)=tanx\psi(x) = \tan x, let's evaluate the expressions step-by-step.

  1. Evaluate ψ(π6)\psi\left(\frac{\pi}{6}\right): ψ(π6)=tan(π6)\psi\left(\frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) Using the known value: tan(π6)=13\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} Thus, ψ(π6)=13\psi\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}

  2. Evaluate ψ(xπ2)\psi\left(x - \frac{\pi}{2}\right): ψ(xπ2)=tan(xπ2)\psi\left(x - \frac{\pi}{2}\right) = \tan\left(x - \frac{\pi}{2}\right) Using the tangent identity tan(xπ2)=cotx\tan\left(x - \frac{\pi}{2}\right) = -\cot x, we get: ψ(xπ2)=cotx\psi\left(x - \frac{\pi}{2}\right) = -\cot x

  3. Evaluate ψ(x)\psi(-x): ψ(x)=tan(x)\psi(-x) = \tan(-x) Using the odd function property of tangent, tan(x)=tanx\tan(-x) = -\tan x, we get: ψ(x)=tanx\psi(-x) = -\tan x

  4. Express ψ(2x)\psi(2x) as a function of ψ(x)\psi(x): We want to express tan(2x)\tan(2x) in terms of tan(x)\tan(x). Using the double-angle identity for tangent: tan(2x)=2tanx1tan2x\tan(2x) = \frac{2\tan x}{1 - \tan^2 x} Since ψ(x)=tanx\psi(x) = \tan x, let ψ(x)=t\psi(x) = t. Then: ψ(2x)=2t1t2\psi(2x) = \frac{2t}{1 - t^2}

So, summarizing the results:

  1. ψ(π6)=13\psi\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}
  2. ψ(xπ2)=cotx\psi\left(x - \frac{\pi}{2}\right) = -\cot x
  3. ψ(x)=tanx\psi(-x) = -\tan x
  4. ψ(2x)=2ψ(x)1(ψ(x))2\psi(2x) = \frac{2\psi(x)}{1 - (\psi(x))^2}

Would you like more details on any of these steps or have any questions?

Here are 5 relative questions for further exploration:

  1. How would you evaluate ψ(π4)\psi\left(\frac{\pi}{4}\right)?
  2. What is the value of ψ(π3)\psi\left(\frac{\pi}{3}\right)?
  3. How does the function ψ(x)\psi(x) behave as xx approaches π2\frac{\pi}{2}?
  4. Can you derive the identity for ψ(3x)\psi(3x) in terms of ψ(x)\psi(x)?
  5. What are the critical points of ψ(x)=tanx\psi(x) = \tan x within the interval 0x<π0 \leq x < \pi?

Tip: When working with trigonometric functions, knowing and using fundamental identities can significantly simplify the problem-solving process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry

Formulas

Double-angle identity for tangent
Odd function property of tangent

Theorems

-

Suitable Grade Level

Advanced High School