Math Problem Statement

given the recursive formula b(n)=b(n-1)-6 and if b(1)=8, write an explicit formula for the sequence

Solution

To find the explicit formula for the sequence b(n)b(n), we start with the recursive formula:

b(n)=b(n1)6b(n) = b(n-1) - 6 and the initial condition: b(1)=8b(1) = 8

Step 1: Expand the recursive formula

Substitute b(n1)b(n-1) in terms of b(n2)b(n-2): b(n)=b(n2)66=b(n2)12b(n) = b(n-2) - 6 - 6 = b(n-2) - 12 Substituting further: b(n)=b(n3)666=b(n3)18b(n) = b(n-3) - 6 - 6 - 6 = b(n-3) - 18 Generalizing this: b(n)=b(1)6(n1)b(n) = b(1) - 6(n-1)

Step 2: Use the initial condition

Substitute b(1)=8b(1) = 8: b(n)=86(n1)b(n) = 8 - 6(n-1)

Step 3: Simplify

Simplify the formula: b(n)=86n+6b(n) = 8 - 6n + 6 b(n)=146nb(n) = 14 - 6n

Final Explicit Formula

b(n)=146nb(n) = 14 - 6n

Would you like a step-by-step example or additional clarification?


Questions to Explore:

  1. What are the first five terms of the sequence using the explicit formula?
  2. How can the explicit formula be used to calculate b(10)b(10)?
  3. What does the sequence represent graphically (e.g., linear decrease)?
  4. How is this sequence different from a geometric sequence?
  5. Can the recursive formula be converted back from the explicit formula?

Tip:

When working with recursive sequences, deriving an explicit formula allows for direct computation of terms without iteration!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Sequences and Series
Recursive Formulas
Explicit Formulas

Formulas

b(n) = b(n-1) - 6
b(n) = 14 - 6n

Theorems

-

Suitable Grade Level

Grades 9-10