Math Problem Statement

(a+b)^4

Solution

To expand (a+b)4(a + b)^4, we use the Binomial Theorem. The general formula for expanding (a+b)n(a + b)^n is:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

where (nk)\binom{n}{k} are the binomial coefficients.

For (a+b)4(a + b)^4, this becomes:

(a+b)4=k=04(4k)a4kbk(a + b)^4 = \sum_{k=0}^{4} \binom{4}{k} a^{4-k} b^k

Step-by-Step Expansion

  1. Compute the binomial coefficients (4k)\binom{4}{k}:

    • (40)=1\binom{4}{0} = 1
    • (41)=4\binom{4}{1} = 4
    • (42)=6\binom{4}{2} = 6
    • (43)=4\binom{4}{3} = 4
    • (44)=1\binom{4}{4} = 1
  2. Apply the binomial theorem:

    (a+b)4=(40)a4b0+(41)a3b1+(42)a2b2+(43)a1b3+(44)a0b4(a + b)^4 = \binom{4}{0} a^4 b^0 + \binom{4}{1} a^3 b^1 + \binom{4}{2} a^2 b^2 + \binom{4}{3} a^1 b^3 + \binom{4}{4} a^0 b^4

  3. Simplify the terms:

    (a+b)4=a4+4a3b+6a2b2+4ab3+b4(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4

Final Expansion

(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4

Would you like a detailed explanation of each step?


Related Questions

  1. How do you expand (a+b)5(a + b)^5 using the binomial theorem?
  2. What is the general expression for (a+b)n(a + b)^n?
  3. How do you find the binomial coefficient (nk)\binom{n}{k}?
  4. What are Pascal’s Triangle and its relation to binomial expansion?
  5. How can you expand (2x+3)4(2x + 3)^4 using the binomial theorem?

Tip

The binomial theorem is useful for expanding powers of binomials and can also be applied to approximate calculations using series expansions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion
Combinatorics

Formulas

(a + b)^n = ∑_{k=0}^{n} C(n, k) a^(n-k) b^k
Binomial Coefficient: C(n, k) = n! / (k! (n-k)!)

Theorems

Binomial Theorem

Suitable Grade Level

Grades 8-10