Math Problem Statement

5(x2-2y3)^3 expand

Solution

To expand 5(x22y3)35(x^2 - 2y^3)^3, we will first apply the binomial expansion formula to the expression (x22y3)3(x^2 - 2y^3)^3 and then multiply by 5.

The binomial expansion formula for (ab)n(a - b)^n is:

(ab)n=k=0n(nk)ank(b)k(a - b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} (-b)^k

In this case, a=x2a = x^2, b=2y3b = 2y^3, and n=3n = 3.

Step 1: Apply the binomial expansion

(x22y3)3=k=03(3k)(x2)3k(2y3)k(x^2 - 2y^3)^3 = \sum_{k=0}^{3} \binom{3}{k} (x^2)^{3-k} (-2y^3)^k

Now, we compute each term:

  • For k=0k=0: (30)(x2)30(2y3)0=1x61=x6\binom{3}{0} (x^2)^{3-0} (-2y^3)^0 = 1 \cdot x^6 \cdot 1 = x^6

  • For k=1k=1: (31)(x2)31(2y3)1=3x4(2y3)=6x4y3\binom{3}{1} (x^2)^{3-1} (-2y^3)^1 = 3 \cdot x^4 \cdot (-2y^3) = -6x^4 y^3

  • For k=2k=2: (32)(x2)32(2y3)2=3x24y6=12x2y6\binom{3}{2} (x^2)^{3-2} (-2y^3)^2 = 3 \cdot x^2 \cdot 4y^6 = 12x^2 y^6

  • For k=3k=3: (33)(x2)33(2y3)3=11(8y9)=8y9\binom{3}{3} (x^2)^{3-3} (-2y^3)^3 = 1 \cdot 1 \cdot (-8y^9) = -8y^9

Step 2: Combine the terms

(x22y3)3=x66x4y3+12x2y68y9(x^2 - 2y^3)^3 = x^6 - 6x^4 y^3 + 12x^2 y^6 - 8y^9

Step 3: Multiply by 5

Now, we multiply each term by 5:

5(x22y3)3=5(x66x4y3+12x2y68y9)5(x^2 - 2y^3)^3 = 5(x^6 - 6x^4 y^3 + 12x^2 y^6 - 8y^9)

=5x630x4y3+60x2y640y9= 5x^6 - 30x^4 y^3 + 60x^2 y^6 - 40y^9

So, the expanded form of 5(x22y3)35(x^2 - 2y^3)^3 is:

5x630x4y3+60x2y640y9\boxed{5x^6 - 30x^4 y^3 + 60x^2 y^6 - 40y^9}


Would you like further details or clarification on any of the steps?

Here are some related questions you can explore:

  1. How can we use the binomial theorem for other powers, such as (x+y)4(x + y)^4?
  2. What would the expansion of (x2+3y3)4(x^2 + 3y^3)^4 look like?
  3. How do we handle higher powers of binomials in multivariable calculus?
  4. Can we apply the binomial expansion to non-integer exponents?
  5. What are the applications of binomial expansions in physics or engineering?

Tip: Practice applying the binomial theorem to different powers to get more comfortable with the pattern and coefficients!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Expansion
Algebra
Polynomials

Formulas

Binomial Expansion Formula: (a - b)^n = Σ (n choose k) * a^(n-k) * (-b)^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12