Math Problem Statement

(2ax - by)3 = Blank 1a3x + Blank 2a2xby + Blank 3axb2y + Blank 4b3y

Solution

To expand the expression (2axby)3(2ax - by)^3, we can use the Binomial Theorem, which states:

(a+b)n=k=0n(nk)ankbk(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

For (2axby)3(2ax - by)^3, let’s identify the terms:

  • a=2axa = 2ax
  • b=byb = -by
  • n=3n = 3

Now, we can apply the Binomial Theorem:

(2axby)3=k=03(3k)(2ax)3k(by)k(2ax - by)^3 = \sum_{k=0}^{3} \binom{3}{k} (2ax)^{3-k} (-by)^k

Step-by-Step Expansion

  1. Term with k=0k = 0: (30)(2ax)3(by)0=1(2ax)31=8a3x3\binom{3}{0} (2ax)^3 (-by)^0 = 1 \cdot (2ax)^3 \cdot 1 = 8a^3x^3

  2. Term with k=1k = 1: (31)(2ax)2(by)1=3(4a2x2)(by)=12a2xbxy\binom{3}{1} (2ax)^2 (-by)^1 = 3 \cdot (4a^2x^2) \cdot (-by) = -12a^2xbxy

  3. Term with k=2k = 2: (32)(2ax)1(by)2=3(2ax)(b2y2)=6ab2xy2\binom{3}{2} (2ax)^1 (-by)^2 = 3 \cdot (2ax) \cdot (b^2y^2) = 6ab^2xy^2

  4. Term with k=3k = 3: (33)(2ax)0(by)3=11(b3y3)=b3y3\binom{3}{3} (2ax)^0 (-by)^3 = 1 \cdot 1 \cdot (-b^3y^3) = -b^3y^3

Putting It All Together

Combine all the terms:

(2axby)3=8a3x312a2xbxy+6ab2xy2b3y3(2ax - by)^3 = 8a^3x^3 - 12a^2xbxy + 6ab^2xy^2 - b^3y^3

Numerical Coefficients

Now, let's identify the numerical coefficients for each term:

  1. Blank 1 (for a3x3a^3x^3): 88
  2. Blank 2 (for a2xbxya^2xbxy): 12-12
  3. Blank 3 (for ab2xy2ab^2xy^2): 66
  4. Blank 4 (for b3y3b^3y^3): 1-1

Thus, the numerical coefficients are:

  • Blank 1: 8
  • Blank 2: 12-12
  • Blank 3: 6
  • Blank 4: 1-1

Would you like more details or have any questions?

Related Questions:

  1. What is the Binomial Theorem, and how is it applied in algebra?
  2. Can you explain how to compute binomial coefficients (nk)\binom{n}{k}?
  3. How do signs change in binomial expansions involving subtraction?
  4. What are some real-world applications of binomial expansions?
  5. How would you expand a binomial raised to the fourth power?

Tip: When expanding expressions using the Binomial Theorem, carefully handle the signs of the terms, especially if they involve subtraction or negative values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Theorem
Algebraic Expansion
Binomial Coefficients

Formulas

Binomial Theorem: (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12