Math Problem Statement

Determine the values of sin 2x, cos 2x, and tan 2x, given: a) sin x = 3/5 and x is acute b) cot x = -7/24 and x is obtuse c) cos x = 12/13 and 3π/2 ≤ x ≤ 2π

Solution

To determine the values of sin2x\sin 2x, cos2x\cos 2x, and tan2x\tan 2x, let's use the double angle identities:

sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x cos2x=cos2xsin2x\cos 2x = \cos^2 x - \sin^2 x tan2x=2tanx1tan2x\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}

a) sinx=35\sin x = \frac{3}{5} and xx is acute

To find cosx\cos x, use the Pythagorean identity:

cosx=1sin2x=1(35)2=1625=45\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5}

Now, calculate:

sin2x=2×35×45=2425\sin 2x = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25}

cos2x=(45)2(35)2=1625925=725\cos 2x = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}

tanx=sinxcosx=3/54/5=34\tan x = \frac{\sin x}{\cos x} = \frac{3/5}{4/5} = \frac{3}{4}

tan2x=2×341(34)2=641916=64716=247\tan 2x = \frac{2 \times \frac{3}{4}}{1 - \left(\frac{3}{4}\right)^2} = \frac{\frac{6}{4}}{1 - \frac{9}{16}} = \frac{\frac{6}{4}}{\frac{7}{16}} = \frac{24}{7}

b) cotx=724\cot x = -\frac{7}{24} and xx is obtuse

tanx=247\tan x = -\frac{24}{7}

For tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}, find sinx\sin x and cosx\cos x. Assume positive signs as required.

Let sinx=kk2+242\sin x = \frac{k}{\sqrt{k^2 + 24^2}} where cosx=24k2+242\cos x = -\frac{24}{\sqrt{k^2 + 24^2}}.

Note xx is obtuse, so sinx\sin x is positive and cosx\cos x is negative.

sin2x=2sinxcosx=2×kk2+242×(24k2+242)\sin 2x = 2\sin x\cos x = 2 \times \frac{k}{\sqrt{k^2 + 24^2}} \times \left(-\frac{24}{\sqrt{k^2 + 24^2}}\right)

=48kk2+242= \frac{-48k}{k^2 + 24^2}

Use:

cos2x=12sin2x\cos 2x = 1 - 2\sin^2 x tan2x=2×2471(247)2\tan 2x = -\frac{2 \times \frac{-24}{7}}{1 - \left( -\frac{24}{7} \right)^2}

c) cosx=1213\cos x = \frac{12}{13} and 3π2x2π\frac{3\pi}{2} \le x \le 2\pi

Calculate sinx\sin x:

sinx=1cos2x=1(1213)2=513\sin x = -\sqrt{1 - \cos^2 x} = -\sqrt{1 - \left(\frac{12}{13}\right)^2} = -\frac{5}{13}

(This is negative because 3π2x2π\frac{3\pi}{2} \le x \le 2\pi.)

sin2x=2×1213×513=120169\sin 2x = 2 \times \frac{12}{13} \times -\frac{5}{13} = -\frac{120}{169}

cos2x=(1213)2(513)2=14416925169=119169\cos 2x = \left(\frac{12}{13}\right)^2 - \left(-\frac{5}{13}\right)^2 = \frac{144}{169} - \frac{25}{169} = \frac{119}{169}

tanx=sinxcosx=5131213=512\tan x = \frac{\sin x}{\cos x} = \frac{-\frac{5}{13}}{\frac{12}{13}} = -\frac{5}{12}

tan2x=2×5121(512)2=120119\tan 2x = \frac{2 \times -\frac{5}{12}}{1 - \left(-\frac{5}{12}\right)^2} = -\frac{120}{119}

These solutions should help in understanding the calculations for different angle scenarios.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Double-Angle Identities

Formulas

sin 2x = 2 sin x cos x
cos 2x = cos^2 x - sin^2 x
tan 2x = 2 tan x / (1 - tan^2 x)

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12