To determine the values of sin 2 x \sin 2x sin 2 x , cos 2 x \cos 2x cos 2 x , and tan 2 x \tan 2x tan 2 x , let's use the double angle identities:
sin 2 x = 2 sin x cos x \sin 2x = 2 \sin x \cos x sin 2 x = 2 sin x cos x
cos 2 x = cos 2 x − sin 2 x \cos 2x = \cos^2 x - \sin^2 x cos 2 x = cos 2 x − sin 2 x
tan 2 x = 2 tan x 1 − tan 2 x \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} tan 2 x = 1 − t a n 2 x 2 t a n x
a) sin x = 3 5 \sin x = \frac{3}{5} sin x = 5 3 and x x x is acute
To find cos x \cos x cos x , use the Pythagorean identity:
cos x = 1 − sin 2 x = 1 − ( 3 5 ) 2 = 16 25 = 4 5 \cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5} cos x = 1 − sin 2 x = 1 − ( 5 3 ) 2 = 25 16 = 5 4
Now, calculate:
sin 2 x = 2 × 3 5 × 4 5 = 24 25 \sin 2x = 2 \times \frac{3}{5} \times \frac{4}{5} = \frac{24}{25} sin 2 x = 2 × 5 3 × 5 4 = 25 24
cos 2 x = ( 4 5 ) 2 − ( 3 5 ) 2 = 16 25 − 9 25 = 7 25 \cos 2x = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} cos 2 x = ( 5 4 ) 2 − ( 5 3 ) 2 = 25 16 − 25 9 = 25 7
tan x = sin x cos x = 3 / 5 4 / 5 = 3 4 \tan x = \frac{\sin x}{\cos x} = \frac{3/5}{4/5} = \frac{3}{4} tan x = c o s x s i n x = 4/5 3/5 = 4 3
tan 2 x = 2 × 3 4 1 − ( 3 4 ) 2 = 6 4 1 − 9 16 = 6 4 7 16 = 24 7 \tan 2x = \frac{2 \times \frac{3}{4}}{1 - \left(\frac{3}{4}\right)^2} = \frac{\frac{6}{4}}{1 - \frac{9}{16}} = \frac{\frac{6}{4}}{\frac{7}{16}} = \frac{24}{7} tan 2 x = 1 − ( 4 3 ) 2 2 × 4 3 = 1 − 16 9 4 6 = 16 7 4 6 = 7 24
b) cot x = − 7 24 \cot x = -\frac{7}{24} cot x = − 24 7 and x x x is obtuse
tan x = − 24 7 \tan x = -\frac{24}{7} tan x = − 7 24
For tan x = sin x cos x \tan x = \frac{\sin x}{\cos x} tan x = c o s x s i n x , find sin x \sin x sin x and cos x \cos x cos x . Assume positive signs as required.
Let sin x = k k 2 + 24 2 \sin x = \frac{k}{\sqrt{k^2 + 24^2}} sin x = k 2 + 2 4 2 k where cos x = − 24 k 2 + 24 2 \cos x = -\frac{24}{\sqrt{k^2 + 24^2}} cos x = − k 2 + 2 4 2 24 .
Note x x x is obtuse, so sin x \sin x sin x is positive and cos x \cos x cos x is negative.
sin 2 x = 2 sin x cos x = 2 × k k 2 + 24 2 × ( − 24 k 2 + 24 2 ) \sin 2x = 2\sin x\cos x = 2 \times \frac{k}{\sqrt{k^2 + 24^2}} \times \left(-\frac{24}{\sqrt{k^2 + 24^2}}\right) sin 2 x = 2 sin x cos x = 2 × k 2 + 2 4 2 k × ( − k 2 + 2 4 2 24 )
= − 48 k k 2 + 24 2 = \frac{-48k}{k^2 + 24^2} = k 2 + 2 4 2 − 48 k
Use:
cos 2 x = 1 − 2 sin 2 x \cos 2x = 1 - 2\sin^2 x cos 2 x = 1 − 2 sin 2 x
tan 2 x = − 2 × − 24 7 1 − ( − 24 7 ) 2 \tan 2x = -\frac{2 \times \frac{-24}{7}}{1 - \left( -\frac{24}{7} \right)^2} tan 2 x = − 1 − ( − 7 24 ) 2 2 × 7 − 24
c) cos x = 12 13 \cos x = \frac{12}{13} cos x = 13 12 and 3 π 2 ≤ x ≤ 2 π \frac{3\pi}{2} \le x \le 2\pi 2 3 π ≤ x ≤ 2 π
Calculate sin x \sin x sin x :
sin x = − 1 − cos 2 x = − 1 − ( 12 13 ) 2 = − 5 13 \sin x = -\sqrt{1 - \cos^2 x} = -\sqrt{1 - \left(\frac{12}{13}\right)^2} = -\frac{5}{13} sin x = − 1 − cos 2 x = − 1 − ( 13 12 ) 2 = − 13 5
(This is negative because 3 π 2 ≤ x ≤ 2 π \frac{3\pi}{2} \le x \le 2\pi 2 3 π ≤ x ≤ 2 π .)
sin 2 x = 2 × 12 13 × − 5 13 = − 120 169 \sin 2x = 2 \times \frac{12}{13} \times -\frac{5}{13} = -\frac{120}{169} sin 2 x = 2 × 13 12 × − 13 5 = − 169 120
cos 2 x = ( 12 13 ) 2 − ( − 5 13 ) 2 = 144 169 − 25 169 = 119 169 \cos 2x = \left(\frac{12}{13}\right)^2 - \left(-\frac{5}{13}\right)^2 = \frac{144}{169} - \frac{25}{169} = \frac{119}{169} cos 2 x = ( 13 12 ) 2 − ( − 13 5 ) 2 = 169 144 − 169 25 = 169 119
tan x = sin x cos x = − 5 13 12 13 = − 5 12 \tan x = \frac{\sin x}{\cos x} = \frac{-\frac{5}{13}}{\frac{12}{13}} = -\frac{5}{12} tan x = c o s x s i n x = 13 12 − 13 5 = − 12 5
tan 2 x = 2 × − 5 12 1 − ( − 5 12 ) 2 = − 120 119 \tan 2x = \frac{2 \times -\frac{5}{12}}{1 - \left(-\frac{5}{12}\right)^2} = -\frac{120}{119} tan 2 x = 1 − ( − 12 5 ) 2 2 ×− 12 5 = − 119 120
These solutions should help in understanding the calculations for different angle scenarios.