Math Problem Statement

Compute P(theta) and find the exact value of the six circular functions if theta=19π/6 Sin(theta) cos(theta). Tan(theta). Csc(theta). Sec(theta). Cot(theta)

Solution

To solve for the six circular functions when θ=19π6\theta = \frac{19\pi}{6}, we need to first reduce θ\theta to an equivalent angle between 0 and 2π2\pi, and then calculate the sine, cosine, tangent, cosecant, secant, and cotangent.

Step 1: Reduce θ\theta to an equivalent angle in the standard interval

The angle θ=19π6\theta = \frac{19\pi}{6} is greater than 2π2\pi. To find the equivalent angle within one full rotation (between 0 and 2π2\pi), we subtract multiples of 2π2\pi.

θequiv=19π62π=19π612π6=7π6\theta_{\text{equiv}} = \frac{19\pi}{6} - 2\pi = \frac{19\pi}{6} - \frac{12\pi}{6} = \frac{7\pi}{6}

So, 19π6\frac{19\pi}{6} is coterminal with 7π6\frac{7\pi}{6}.

Step 2: Identify the reference angle and the quadrant

The angle 7π6\frac{7\pi}{6} is in the third quadrant, where sine is negative and cosine is negative. The reference angle is found by subtracting π\pi (which is equivalent to 6π/66\pi/6):

Reference angle=7π6π=π6\text{Reference angle} = \frac{7\pi}{6} - \pi = \frac{\pi}{6}

Step 3: Calculate the six circular functions

The reference angle is π6\frac{\pi}{6}, and we know the values of sine and cosine for π6\frac{\pi}{6} from trigonometric tables:

sin(π6)=12,cos(π6)=32\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}

In the third quadrant, both sine and cosine are negative. Thus:

sin(7π6)=12,cos(7π6)=32\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}, \quad \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}

Using these, we can now calculate the other trigonometric functions.

1. Sine:

sin(19π6)=sin(7π6)=12\sin\left(\frac{19\pi}{6}\right) = \sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}

2. Cosine:

cos(19π6)=cos(7π6)=32\cos\left(\frac{19\pi}{6}\right) = \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}

3. Tangent:

tan(19π6)=sin(19π6)cos(19π6)=1232=13=33\tan\left(\frac{19\pi}{6}\right) = \frac{\sin\left(\frac{19\pi}{6}\right)}{\cos\left(\frac{19\pi}{6}\right)} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}

4. Cosecant:

csc(19π6)=1sin(19π6)=112=2\csc\left(\frac{19\pi}{6}\right) = \frac{1}{\sin\left(\frac{19\pi}{6}\right)} = \frac{1}{-\frac{1}{2}} = -2

5. Secant:

sec(19π6)=1cos(19π6)=132=23=233\sec\left(\frac{19\pi}{6}\right) = \frac{1}{\cos\left(\frac{19\pi}{6}\right)} = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}

6. Cotangent:

cot(19π6)=1tan(19π6)=133=3\cot\left(\frac{19\pi}{6}\right) = \frac{1}{\tan\left(\frac{19\pi}{6}\right)} = \frac{1}{\frac{\sqrt{3}}{3}} = \sqrt{3}

Final results:

  • sin(19π6)=12\sin\left(\frac{19\pi}{6}\right) = -\frac{1}{2}
  • cos(19π6)=32\cos\left(\frac{19\pi}{6}\right) = -\frac{\sqrt{3}}{2}
  • tan(19π6)=33\tan\left(\frac{19\pi}{6}\right) = \frac{\sqrt{3}}{3}
  • csc(19π6)=2\csc\left(\frac{19\pi}{6}\right) = -2
  • sec(19π6)=233\sec\left(\frac{19\pi}{6}\right) = -\frac{2\sqrt{3}}{3}
  • cot(19π6)=3\cot\left(\frac{19\pi}{6}\right) = \sqrt{3}

Would you like more details on any step?

Here are 5 follow-up questions for practice:

  1. What are the six circular functions of θ=5π4\theta = \frac{5\pi}{4}?
  2. How do you find the reference angle of any given angle in radians?
  3. What is the exact value of tan(5π3)\tan\left(\frac{5\pi}{3}\right)?
  4. Explain why sine and cosine have different signs in the third quadrant.
  5. What is the relationship between the secant and cosine functions?

Tip: Remember, for angles in the third quadrant, both sine and cosine are negative, so their reciprocals (cosecant and secant) will also be negative.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Circular Functions
Reference Angles
Coterminal Angles

Formulas

sin(θ)
cos(θ)
tan(θ) = sin(θ) / cos(θ)
csc(θ) = 1 / sin(θ)
sec(θ) = 1 / cos(θ)
cot(θ) = 1 / tan(θ)

Theorems

Coterminal Angle Theorem
Trigonometric Function Values for Special Angles

Suitable Grade Level

Grades 10-12 (High School Level)