Math Problem Statement

Find an exact value for tan(75 degrees) using either the half angle identities or sum and different identities. simplify your exact answer and do not provide a decimal approximation

Solution

To find the exact value of tan(75)\tan(75^\circ), we can use the sum identity for tangent. We know that:

75=45+3075^\circ = 45^\circ + 30^\circ

Using the sum identity for tangent:

tan(A+B)=tan(A)+tan(B)1tan(A)tan(B)\tan(A + B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}

Let A=45A = 45^\circ and B=30B = 30^\circ, so:

tan(75)=tan(45)+tan(30)1tan(45)tan(30)\tan(75^\circ) = \frac{\tan(45^\circ) + \tan(30^\circ)}{1 - \tan(45^\circ)\tan(30^\circ)}

We know the exact values of tan(45)\tan(45^\circ) and tan(30)\tan(30^\circ):

  • tan(45)=1\tan(45^\circ) = 1
  • tan(30)=13\tan(30^\circ) = \frac{1}{\sqrt{3}}

Now substitute these values into the identity:

tan(75)=1+131113\tan(75^\circ) = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}}

Simplify the numerator and the denominator:

tan(75)=1+13113\tan(75^\circ) = \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}}

Now, to simplify further, let's make both the numerator and denominator have a common denominator:

Numerator: 1+13=33+13=3+131 + \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{\sqrt{3} + 1}{\sqrt{3}}

Denominator: 113=3313=3131 - \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{\sqrt{3} - 1}{\sqrt{3}}

Now the expression becomes:

tan(75)=3+13313\tan(75^\circ) = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}}

The 3\sqrt{3} terms cancel out, leaving:

tan(75)=3+131\tan(75^\circ) = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}

This is the exact value of tan(75)\tan(75^\circ).

Would you like any further simplifications or clarifications?

Related questions:

  1. How can we simplify further expressions involving trigonometric sums?
  2. What are other angles that use sum and difference identities?
  3. Can the tangent of non-standard angles be found without using a calculator?
  4. How do half-angle identities differ from sum and difference identities?
  5. What are other methods to find exact values for trigonometric functions?

Tip: Learning the exact values for common angles (like 30°, 45°, and 60°) helps greatly in simplifying trigonometric problems without a calculator.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sum and Difference Identities

Formulas

tan(A + B) = (tan(A) + tan(B)) / (1 - tan(A)tan(B))

Theorems

Sum Identity for Tangent

Suitable Grade Level

Grades 10-12