Math Problem Statement

Evaluate lim x->0+ ((ln x)/(x-1) - csc x), without using any approximation (is l hopital rule applicable)

Solution

To evaluate the limit

limx0+(lnxx1cscx),\lim_{x \to 0^+} \left( \frac{\ln x}{x - 1} - \csc x \right),

we first rewrite it for clarity:

limx0+(lnxx11sinx).\lim_{x \to 0^+} \left( \frac{\ln x}{x - 1} - \frac{1}{\sin x} \right).

Both terms tend toward -\infty as x0+x \to 0^+ (since lnx\ln x \to -\infty and sinx0\sin x \to 0). Thus, the limit presents an indeterminate form of ()-\infty - (-\infty), which simplifies to an indeterminate form.

We can combine the fractions:

lnxx1cscx=lnxx11sinx=lnxsinx(x1)(x1)sinx.\frac{\ln x}{x - 1} - \csc x = \frac{\ln x}{x - 1} - \frac{1}{\sin x} = \frac{\ln x \sin x - (x - 1)}{(x - 1) \sin x}.

Now, we will evaluate the limit:

limx0+lnxsinx(x1)(x1)sinx.\lim_{x \to 0^+} \frac{\ln x \sin x - (x - 1)}{(x - 1) \sin x}.

Step 1: Evaluate the numerator

As x0+x \to 0^+:

  • lnx\ln x \to -\infty
  • sinxx\sin x \approx x (as x0x \to 0), thus lnxsinx\ln x \sin x \to -\infty

The numerator lnxsinx(x1)\ln x \sin x - (x - 1) also tends to -\infty since (x1)1(x - 1) \to -1.

Step 2: Evaluate the denominator

As x0+x \to 0^+:

  • x11x - 1 \to -1
  • sinx0\sin x \to 0

Thus, (x1)sinx0(x - 1) \sin x \to 0.

Step 3: Apply L'Hôpital's Rule

Since we have the form 0\frac{-\infty}{0}, we apply L'Hôpital's Rule, differentiating the numerator and denominator:

  1. Differentiate the numerator:

    • f(x)=lnxsinx(x1)f(x) = \ln x \sin x - (x - 1)
    • Using the product rule, f(x)=1xsinx+lnxcosx1f'(x) = \frac{1}{x} \sin x + \ln x \cos x - 1.
  2. Differentiate the denominator:

    • g(x)=(x1)sinxg(x) = (x - 1) \sin x
    • Using the product rule, g(x)=sinx+(x1)cosxg'(x) = \sin x + (x - 1) \cos x.

Step 4: Compute the limit again

Now we compute:

limx0+1xsinx+lnxcosx1sinx+(x1)cosx.\lim_{x \to 0^+} \frac{\frac{1}{x} \sin x + \ln x \cos x - 1}{\sin x + (x - 1) \cos x}.

Substituting x0+x \to 0^+:

  • 1xsinx0\frac{1}{x} \sin x \to 0,
  • lnxcosx\ln x \cos x \to -\infty,
  • The numerator thus approaches -\infty.

In the denominator:

  • sinx0\sin x \to 0,
  • (x1)cosx1(x - 1) \cos x \to -1,
  • So the denominator approaches 1-1.

Thus, we again have:

1=.\frac{-\infty}{-1} = \infty.

Final Result

The limit evaluates to

limx0+(lnxx1cscx)=.\lim_{x \to 0^+} \left( \frac{\ln x}{x - 1} - \csc x \right) = \infty.

If you have any questions or need further details, feel free to ask!

Further Questions:

  1. What is the significance of L'Hôpital's Rule in this context?
  2. Can you explain how the behavior of lnx\ln x near zero influences the limit?
  3. How does the Taylor series expansion of sinx\sin x affect the evaluation of limits?
  4. What alternative methods could be used to evaluate this limit?
  5. What are some other indeterminate forms similar to this one?

Tip

When evaluating limits that involve logarithmic or trigonometric functions, always check for common indeterminate forms and consider algebraic manipulation or L'Hôpital's Rule for clarity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
L'Hôpital's Rule
Logarithmic Functions
Trigonometric Functions

Formulas

lim x->a f(x)/g(x) = lim x->a f'(x)/g'(x) if indeterminate
csc x = 1/sin x

Theorems

L'Hôpital's Rule

Suitable Grade Level

Grades 11-12