Math Problem Statement

use l hopital method to solve and give me complete solution with appropriate answer lim x tends to pi/2 (ln(csc x))/(x-(pi / 2))

Solution

We need to evaluate the limit using L'Hôpital's Rule:

limxπ2ln(cscx)xπ2\lim_{x \to \frac{\pi}{2}} \frac{\ln(\csc x)}{x - \frac{\pi}{2}}

Step 1: Check Indeterminate Form

As xπ2x \to \frac{\pi}{2}:

  • cscx=1sinx\csc x = \frac{1}{\sin x}, so ln(cscx)=ln(1sinx)=ln(sinx)\ln(\csc x) = \ln\left(\frac{1}{\sin x}\right) = -\ln(\sin x)

  • Since sin(π2)=1\sin\left(\frac{\pi}{2}\right) = 1, we get: ln(cscx)=ln(1)=0\ln(\csc x) = -\ln(1) = 0

  • The denominator is also xπ2x - \frac{\pi}{2}, which approaches 00.

Thus, we have a 0/0 indeterminate form, so we apply L'Hôpital’s Rule, which states:

limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

if the right-hand limit exists.

Step 2: Differentiate Numerator and Denominator

We differentiate the numerator:

f(x)=ln(cscx)=ln(sinx)f(x) = \ln(\csc x) = -\ln(\sin x)

Using the chain rule:

f(x)=1sinxcosx=cotxf'(x) = -\frac{1}{\sin x} \cdot \cos x = -\cot x

For the denominator:

g(x)=xπ2,g(x)=1g(x) = x - \frac{\pi}{2}, \quad g'(x) = 1

Step 3: Compute the Limit

Applying L’Hôpital’s Rule:

limxπ2ln(cscx)xπ2=limxπ2cotx1\lim_{x \to \frac{\pi}{2}} \frac{\ln(\csc x)}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}} \frac{-\cot x}{1}

Since cotx=cosxsinx\cot x = \frac{\cos x}{\sin x}, we evaluate at x=π2x = \frac{\pi}{2}:

cot(π2)=cos(π2)sin(π2)=01=0\cot\left(\frac{\pi}{2}\right) = \frac{\cos\left(\frac{\pi}{2}\right)}{\sin\left(\frac{\pi}{2}\right)} = \frac{0}{1} = 0

Thus,

limxπ2ln(cscx)xπ2=0\lim_{x \to \frac{\pi}{2}} \frac{\ln(\csc x)}{x - \frac{\pi}{2}} = 0

Final Answer:

limxπ2ln(cscx)xπ2=0\lim_{x \to \frac{\pi}{2}} \frac{\ln(\csc x)}{x - \frac{\pi}{2}} = 0

Would you like additional explanations or a graph to visualize this behavior?

Related Questions:

  1. How do you apply L'Hôpital’s Rule when both numerator and denominator tend to infinity?
  2. What happens if higher-order derivatives are needed in L'Hôpital’s Rule?
  3. Can you apply L'Hôpital’s Rule to limits involving exponentials?
  4. What is the graphical interpretation of this limit?
  5. How can Taylor series help in evaluating similar limits?

Tip: Always check the form of the limit before applying L'Hôpital’s Rule to avoid unnecessary differentiation! 🚀

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Limits
L'Hôpital's Rule
Trigonometric Functions
Logarithms

Formulas

L'Hôpital's Rule: \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}

Theorems

L'Hôpital's Rule

Suitable Grade Level

Grades 11-12