Math Problem Statement

Using the usual rules of index notation, evaluate the following expressions: (a) ijij (b) ijkkji (c) ijkaiak (d) ijk @2 @xi@xj (e) aibjij

Solution

The usual rules of index notation include the Einstein summation convention, where repeated indices imply summation, and the properties of the Kronecker delta δij\delta_{ij} and the Levi-Civita symbol εijk\varepsilon_{ijk}. Let us evaluate each expression step by step.


(a) δijδij\delta_{ij} \delta_{ij}:

Using the Kronecker delta property: δijδij=i=13j=13δijδij.\delta_{ij} \delta_{ij} = \sum_{i=1}^3 \sum_{j=1}^3 \delta_{ij} \delta_{ij}. The Kronecker delta satisfies δii=3\delta_{ii} = 3 (the trace of the identity matrix in 3D): δijδij=δii=3.\delta_{ij} \delta_{ij} = \delta_{ii} = 3.


(b) εijkεkji\varepsilon_{ijk} \varepsilon_{kji}:

Expand the Levi-Civita symbols: εijkεkji=i=13j=13k=13εijkεkji.\varepsilon_{ijk} \varepsilon_{kji} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \varepsilon_{ijk} \varepsilon_{kji}. The property of Levi-Civita symbols states: εijkεkji=3!δijδjiδikδjk.\varepsilon_{ijk} \varepsilon_{kji} = 3! \delta_{ij} \delta_{ji} - \delta_{ik} \delta_{jk}. For three dimensions, this simplifies to: εijkεkji=3!(1)=6.\varepsilon_{ijk} \varepsilon_{kji} = 3!(1) = 6.


(c) εijkaiak\varepsilon_{ijk} a_i a_k:

In this expression: εijkaiak.\varepsilon_{ijk} a_i a_k. The Levi-Civita symbol is antisymmetric in ii and kk. Since aiaka_i a_k is symmetric under the interchange of ii and kk, the product εijkaiak=0\varepsilon_{ijk} a_i a_k = 0 due to antisymmetry.


(d) εijk2xixj\varepsilon_{ijk} \frac{\partial^2}{\partial x_i \partial x_j}:

The second derivative operator 2xixj\frac{\partial^2}{\partial x_i \partial x_j} is symmetric under ii and jj. Since εijk\varepsilon_{ijk} is antisymmetric under ii and jj, their product is zero: εijk2xixj=0.\varepsilon_{ijk} \frac{\partial^2}{\partial x_i \partial x_j} = 0.


(e) aibjδija_i b_j \delta_{ij}:

Using the Einstein summation convention: aibjδij=i=13aibi.a_i b_j \delta_{ij} = \sum_{i=1}^3 a_i b_i. This is simply the dot product of the vectors a\mathbf{a} and b\mathbf{b}: aibjδij=ab.a_i b_j \delta_{ij} = \mathbf{a} \cdot \mathbf{b}.


Final Answers:

(a) δijδij=3\delta_{ij} \delta_{ij} = 3.
(b) εijkεkji=6\varepsilon_{ijk} \varepsilon_{kji} = 6.
(c) εijkaiak=0\varepsilon_{ijk} a_i a_k = 0.
(d) εijk2xixj=0\varepsilon_{ijk} \frac{\partial^2}{\partial x_i \partial x_j} = 0.
(e) aibjδij=aba_i b_j \delta_{ij} = \mathbf{a} \cdot \mathbf{b}.


Do you want detailed derivations or have any questions?
Here are 5 related questions to expand your understanding:

  1. What are the properties of the Levi-Civita symbol in 2D versus 3D?
  2. How does the Kronecker delta simplify summations in higher dimensions?
  3. What are some physical applications of these tensor operations (e.g., in fluid dynamics or electromagnetism)?
  4. How does symmetry or antisymmetry of tensors impact their contraction?
  5. Can you derive the determinant of a 3x3 matrix using the Levi-Civita symbol?

Tip: When working with the Levi-Civita symbol, always check the symmetry properties of the associated terms to identify when contractions vanish.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Index Notation
Einstein Summation Convention
Kronecker Delta
Levi-Civita Symbol
Tensors
Symmetry and Antisymmetry

Formulas

δij δij = 3
εijk εkji = 6
εijk ai ak = 0
εijk (∂^2 / ∂xi ∂xj) = 0
ai bj δij = a · b

Theorems

Einstein Summation Convention
Properties of Kronecker Delta
Properties of Levi-Civita Symbol

Suitable Grade Level

Undergraduate (Mathematics/Physics)