Math Problem Statement

Complete the table by evaluating the function h(x)=(−2x+6)2 for the given values of x.

x h(x)=(−2x+6)2 −3 144 −2 −1 0 36 1 16 2 3 0

Solution

Let's complete the table by evaluating the function h(x)=(2x+6)2h(x) = (-2x + 6)^2 for each given value of xx.

  1. When x=3x = -3:

h(3)=(2(3)+6)2=(6+6)2=(12)2=144h(-3) = (-2(-3) + 6)^2 = (6 + 6)^2 = (12)^2 = 144

  1. When x=2x = -2:

h(2)=(2(2)+6)2=(4+6)2=(10)2=100h(-2) = (-2(-2) + 6)^2 = (4 + 6)^2 = (10)^2 = 100

  1. When x=1x = -1:

h(1)=(2(1)+6)2=(2+6)2=(8)2=64h(-1) = (-2(-1) + 6)^2 = (2 + 6)^2 = (8)^2 = 64

  1. When x=0x = 0:

h(0)=(2(0)+6)2=(0+6)2=(6)2=36h(0) = (-2(0) + 6)^2 = (0 + 6)^2 = (6)^2 = 36

  1. When x=1x = 1:

h(1)=(2(1)+6)2=(2+6)2=(4)2=16h(1) = (-2(1) + 6)^2 = (-2 + 6)^2 = (4)^2 = 16

  1. When x=2x = 2:

h(2)=(2(2)+6)2=(4+6)2=(2)2=4h(2) = (-2(2) + 6)^2 = (-4 + 6)^2 = (2)^2 = 4

  1. When x=3x = 3:

h(3)=(2(3)+6)2=(6+6)2=(0)2=0h(3) = (-2(3) + 6)^2 = (-6 + 6)^2 = (0)^2 = 0

Completed Table:

xxh(x)=(2x+6)2h(x) = (-2x + 6)^2
-3144
-2100
-164
036
116
24
30

Would you like further details or have any questions about this solution?

Here are some related questions to explore:

  1. How would the graph of the function h(x)=(2x+6)2h(x) = (-2x + 6)^2 look like?
  2. What is the vertex of the function h(x)=(2x+6)2h(x) = (-2x + 6)^2?
  3. How does changing the coefficient of xx affect the graph of the function?
  4. What is the effect of adding a constant to the function h(x)=(2x+6)2+kh(x) = (-2x + 6)^2 + k?
  5. How would this function behave for very large or very small values of xx?

Tip: When squaring a binomial like (2x+6)(-2x + 6), always remember to apply the distributive property, and then square each term.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Quadratic Functions
Polynomial Functions

Formulas

h(x) = (-2x + 6)^2

Theorems

-

Suitable Grade Level

Grades 7-9