Math Problem Statement

Let f(x) = x^2 - 3x + 3, g(x) = 4/√x, and h(x) = √(1 - x). Find f(-6), g(-6), h(-6), h(d), and h(-x).

Solution

Let's analyze the problem.

We are given three functions:

  • f(x)=x23x+3f(x) = x^2 - 3x + 3
  • g(x)=4xg(x) = \frac{4}{\sqrt{x}}
  • h(x)=1xh(x) = \sqrt{1 - x}

We are tasked with evaluating:

  1. f(6)f(-6)
  2. g(6)g(-6)
  3. h(6)h(-6)
  4. h(d)h(d)
  5. h(x)h(-x)

Step-by-step solutions:


1. f(6)f(-6)

Substitute x=6x = -6 into f(x)f(x): f(6)=(6)23(6)+3=36+18+3=57f(-6) = (-6)^2 - 3(-6) + 3 = 36 + 18 + 3 = 57 Answer: f(6)=57f(-6) = 57.


2. g(6)g(-6)

Substitute x=6x = -6 into g(x)=4xg(x) = \frac{4}{\sqrt{x}}: g(6)=46g(-6) = \frac{4}{\sqrt{-6}} Since the square root of a negative number is not a real number, the solution is not a real number.

Answer: g(6)=not a real numberg(-6) = \text{not a real number}.


3. h(6)h(-6)

Substitute x=6x = -6 into h(x)=1xh(x) = \sqrt{1 - x}: h(6)=1(6)=1+6=7h(-6) = \sqrt{1 - (-6)} = \sqrt{1 + 6} = \sqrt{7} Answer: h(6)=7h(-6) = \sqrt{7}.


4. h(d)h(d)

For h(d)h(d), substitute x=dx = d into h(x)=1xh(x) = \sqrt{1 - x}: h(d)=1dh(d) = \sqrt{1 - d} Answer: h(d)=1dh(d) = \sqrt{1 - d}.


5. h(x)h(-x)

For h(x)h(-x), substitute x=xx = -x into h(x)=1xh(x) = \sqrt{1 - x}: h(x)=1(x)=1+xh(-x) = \sqrt{1 - (-x)} = \sqrt{1 + x} Answer: h(x)=1+xh(-x) = \sqrt{1 + x}.


Final Answers:

  1. f(6)=57f(-6) = 57
  2. g(6)=not a real numberg(-6) = \text{not a real number}
  3. h(6)=7h(-6) = \sqrt{7}
  4. h(d)=1dh(d) = \sqrt{1 - d}
  5. h(x)=1+xh(-x) = \sqrt{1 + x}

Would you like further clarifications or visual representations?


Related Questions:

  1. How do you determine if a solution is not a real number?
  2. What are the conditions for a square root to yield a real number?
  3. Can f(x)f(x) ever yield complex solutions with different inputs?
  4. How would the value of h(x)h(x) change if x>1x > 1?
  5. Can g(x)g(x) ever yield a real value for negative inputs?

Tip:

Always verify the domain of square roots and denominators to determine whether a function has real or complex outputs.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Quadratic functions
Radicals and their domains
Substitution in functions

Formulas

f(x) = x^2 - 3x + 3
g(x) = 4/√x
h(x) = √(1 - x)

Theorems

Domain restrictions for square roots
Basic algebraic substitution

Suitable Grade Level

Grades 9-11