Math Problem Statement

Evaluate \iint\limits_S (\nabla \times \mathbf{F}) \cdot d \mathbf{S} where

\mathbf{F} = (z^2 + y z) \mathbf{i} - (3 xy + x z) \mathbf{j} + (x^3 y^3 + x y) \mathbf{k}

and S is the surface

S =\lbrace(x, y, z) |z = 5 - x^2 - y^2, z \geqslant 1\rbrace

Solution

To evaluate S(×F)dS\iint\limits_S (\nabla \times \mathbf{F}) \cdot d \mathbf{S}, we will use Stokes' theorem, which states:

S(×F)dS=CFdr,\iint\limits_S (\nabla \times \mathbf{F}) \cdot d \mathbf{S} = \oint\limits_C \mathbf{F} \cdot d\mathbf{r},

where CC is the boundary curve of the surface SS, oriented such that the normal vector to SS follows the right-hand rule with respect to CC. The surface SS is given as z=5x2y2z = 5 - x^2 - y^2 for z1z \geq 1, which is a portion of a paraboloid.

Steps:

  1. Boundary Curve CC: The boundary CC occurs where z=1z = 1, which corresponds to 1=5x2y21 = 5 - x^2 - y^2, or x2+y2=4x^2 + y^2 = 4. This is a circle in the z=1z = 1 plane of radius 2.

  2. Parameterize CC: Let the curve be parameterized as: r(t)=2costi+2sintj+k,t[0,2π].\mathbf{r}(t) = 2\cos t\, \mathbf{i} + 2\sin t\, \mathbf{j} + \mathbf{k}, \quad t \in [0, 2\pi]. Then, dr=drdtdt=(2sinti+2costj)dt.d\mathbf{r} = \frac{d\mathbf{r}}{dt} dt = (-2\sin t\, \mathbf{i} + 2\cos t\, \mathbf{j}) dt.

  3. Evaluate F\mathbf{F} along CC: Substitute x=2costx = 2\cos t, y=2sinty = 2\sin t, and z=1z = 1 into F\mathbf{F}: F=(z2+yz)i(3xy+xz)j+(x3y3+xy)k.\mathbf{F} = (z^2 + yz) \mathbf{i} - (3xy + xz) \mathbf{j} + (x^3y^3 + xy) \mathbf{k}. Substituting: F=(12+(2sint)(1))i(3(2cost)(2sint)+(2cost)(1))j+((2cost)3(2sint)3+(2cost)(2sint))k.\mathbf{F} = \left(1^2 + (2\sin t)(1)\right) \mathbf{i} - \left(3(2\cos t)(2\sin t) + (2\cos t)(1)\right) \mathbf{j} + \left((2\cos t)^3(2\sin t)^3 + (2\cos t)(2\sin t)\right) \mathbf{k}. Simplify each term: F=(1+2sint)i(12costsint+2cost)j+(8cos3tsin3t+4costsint)k.\mathbf{F} = (1 + 2\sin t) \mathbf{i} - (12\cos t \sin t + 2\cos t) \mathbf{j} + (8\cos^3 t \sin^3 t + 4\cos t \sin t) \mathbf{k}.

  4. Dot product Fdr\mathbf{F} \cdot d\mathbf{r}: Substitute F\mathbf{F} and drd\mathbf{r} into Fdr\mathbf{F} \cdot d\mathbf{r}: Fdr=(1+2sint)(2sint)+(12costsint2cost)(2cost).\mathbf{F} \cdot d\mathbf{r} = (1 + 2\sin t)(-2\sin t) + (-12\cos t \sin t - 2\cos t)(2\cos t). Simplify: Fdr=2sint4sin2t24costsintcost4cos2t.\mathbf{F} \cdot d\mathbf{r} = -2\sin t - 4\sin^2 t - 24\cos t \sin t \cos t - 4\cos^2 t. Further simplifying: Fdr=2sint4sin2t12sin(2t)4cos2t.\mathbf{F} \cdot d\mathbf{r} = -2\sin t - 4\sin^2 t - 12\sin(2t) - 4\cos^2 t.

  5. Integrate over t[0,2π]t \in [0, 2\pi]: Integrals of odd functions (sint\sin t or sin(2t)\sin(2t)) over [0,2π][0, 2\pi] are 0. Using sin2t+cos2t=1\sin^2 t + \cos^2 t = 1: 02πFdr=02π(4)dt=4×2π=8π.\int_0^{2\pi} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} (-4) dt = -4 \times 2\pi = -8\pi.

Final Answer:

S(×F)dS=8π.\iint\limits_S (\nabla \times \mathbf{F}) \cdot d \mathbf{S} = -8\pi.

Would you like further clarifications or a breakdown of a specific step?


5 Related Questions:

  1. What is Stokes' theorem and when can it be applied?
  2. How do you parameterize a circle in 3D space?
  3. What is the significance of divergence and curl in vector calculus?
  4. How do you simplify dot products involving trigonometric functions?
  5. Why do integrals of odd functions over symmetric intervals vanish?

Tip:

To verify your parameterizations, always check that they satisfy the original equations defining the curve or surface.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Stokes' Theorem
Line Integrals
Surface Integrals

Formulas

Stokes' Theorem: \(\iint\limits_S (\nabla \times \mathbf{F}) \cdot d \mathbf{S} = \oint\limits_C \mathbf{F} \cdot d\mathbf{r}\)
Parameterization of a circle: \(\mathbf{r}(t) = R\cos t\, \mathbf{i} + R\sin t\, \mathbf{j} + z\, \mathbf{k}\)

Theorems

Stokes' Theorem

Suitable Grade Level

Undergraduate Level (Calculus III or Advanced Calculus)