Math Problem Statement

Use Stokes' theorem to evaluate

S curl F · dS. F(x, y, z) = zey i + x cos(y) j + xz sin(y) k, S is the hemisphere x2 + y2 + z2 = 4, y ≥ 0, oriented in the direction of the positive y-axis

Solution

To evaluate S(×F)dS\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{dS} using Stokes' Theorem, we will follow these steps:

Stokes' Theorem

Stokes' Theorem relates the surface integral of the curl of a vector field to the line integral of the vector field over the boundary curve of the surface: S(×F)dS=SFdr.\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{dS} = \oint_{\partial S} \mathbf{F} \cdot \mathbf{dr}.

Here:

  • F(x,y,z)=zeyi+xcos(y)j+xzsin(y)k\mathbf{F}(x, y, z) = z e^y \, \mathbf{i} + x \cos(y) \, \mathbf{j} + xz \sin(y) \, \mathbf{k},
  • SS is the hemisphere x2+y2+z2=4x^2 + y^2 + z^2 = 4, y0y \geq 0,
  • S\partial S is the boundary circle of the hemisphere in the plane y=0y = 0, which is the circle x2+z2=4x^2 + z^2 = 4, y=0y = 0.

Step 1: Parameterize the boundary curve S\partial S

The boundary curve lies in the plane y=0y = 0, and the circle x2+z2=4x^2 + z^2 = 4. We parameterize this circle as: r(t)=2cos(t)i+0j+2sin(t)k,t[0,2π].\mathbf{r}(t) = 2 \cos(t) \, \mathbf{i} + 0 \, \mathbf{j} + 2 \sin(t) \, \mathbf{k}, \quad t \in [0, 2\pi].

The derivative is: r(t)=2sin(t)i+0j+2cos(t)k.\mathbf{r}'(t) = -2 \sin(t) \, \mathbf{i} + 0 \, \mathbf{j} + 2 \cos(t) \, \mathbf{k}.


Step 2: Evaluate Fdr\mathbf{F} \cdot \mathbf{dr} along S\partial S

Substitute r(t)\mathbf{r}(t) into F\mathbf{F}: F(r(t))=(2sin(t)e0)i+(2cos(t)cos(0))j+(2cos(t)2sin(t)sin(0))k.\mathbf{F}(\mathbf{r}(t)) = (2 \sin(t) e^0) \, \mathbf{i} + (2 \cos(t) \cos(0)) \, \mathbf{j} + (2 \cos(t) \cdot 2 \sin(t) \sin(0)) \, \mathbf{k}. Simplify: F(r(t))=2sin(t)i+2cos(t)j+0k.\mathbf{F}(\mathbf{r}(t)) = 2 \sin(t) \, \mathbf{i} + 2 \cos(t) \, \mathbf{j} + 0 \, \mathbf{k}.

The differential dr\mathbf{dr} is: dr=r(t)dt=(2sin(t)i+0j+2cos(t)k)dt.\mathbf{dr} = \mathbf{r}'(t) \, dt = (-2 \sin(t) \, \mathbf{i} + 0 \, \mathbf{j} + 2 \cos(t) \, \mathbf{k}) \, dt.

Dot product: Fdr=(2sin(t))(2sin(t))+(2cos(t))(0)+(0)(2cos(t))dt.\mathbf{F} \cdot \mathbf{dr} = (2 \sin(t))(-2 \sin(t)) + (2 \cos(t))(0) + (0)(2 \cos(t)) \, dt. Fdr=4sin2(t)dt.\mathbf{F} \cdot \mathbf{dr} = -4 \sin^2(t) \, dt.


Step 3: Evaluate the line integral

SFdr=02π4sin2(t)dt.\oint_{\partial S} \mathbf{F} \cdot \mathbf{dr} = \int_0^{2\pi} -4 \sin^2(t) \, dt.

Use the identity sin2(t)=12(1cos(2t))\sin^2(t) = \frac{1}{2}(1 - \cos(2t)): 02π4sin2(t)dt=02π412(1cos(2t))dt.\int_0^{2\pi} -4 \sin^2(t) \, dt = \int_0^{2\pi} -4 \cdot \frac{1}{2}(1 - \cos(2t)) \, dt. =02π2(1cos(2t))dt.= \int_0^{2\pi} -2 (1 - \cos(2t)) \, dt. =02π2dt+02π2cos(2t)dt.= \int_0^{2\pi} -2 \, dt + \int_0^{2\pi} 2 \cos(2t) \, dt.

The first integral: 02π2dt=22π=4π.\int_0^{2\pi} -2 \, dt = -2 \cdot 2\pi = -4\pi.

The second integral: \int_0^{2\pi} 2 \cos(2t) \, dt = 0 \quad \text{(since \cos(2t)isperiodicoveris periodic over0toto2\pi)}.

Thus: SFdr=4π.\oint_{\partial S} \mathbf{F} \cdot \mathbf{dr} = -4\pi.


Final Answer

S(×F)dS=4π.\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{dS} = \boxed{-4\pi}.


Do you have any questions, or would you like additional details?

Here are 5 related questions to expand on this topic:

  1. How do we compute the curl of a vector field?
  2. Can we apply Stokes’ Theorem for surfaces with non-circular boundaries?
  3. How would the solution change if the surface orientation were reversed?
  4. What are the conditions required for Stokes’ Theorem to hold?
  5. How can Stokes’ Theorem be used in physics, particularly electromagnetism?

Tip: Always check the orientation of the surface and boundary when applying Stokes' Theorem to ensure consistent results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Surface Integrals
Line Integrals
Parametrization

Formulas

Stokes' Theorem: \(\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{dS} = \oint_{\partial S} \mathbf{F} \cdot \mathbf{dr}\)
Parameterization of a circle: \(\mathbf{r}(t) = R \cos(t) \mathbf{i} + R \sin(t) \mathbf{k}\)
Identity: \(\sin^2(t) = \frac{1}{2}(1 - \cos(2t))\)

Theorems

Stokes' Theorem

Suitable Grade Level

Undergraduate (Calculus III or Advanced Calculus)