Math Problem Statement

Given r(x)=(2x)/(x+5), find the following. (a) r(0)= (b) r(-1)= (c) r(-3)= (d) r((1)/(2))= (e) r(0.1)= (f) r(10,000)=

Solution

We are given the rational function r(x)=2xx+5r(x) = \frac{2x}{x + 5}, and we need to evaluate the following values:

(a) r(0)r(0):

r(0)=2(0)0+5=05=0r(0) = \frac{2(0)}{0 + 5} = \frac{0}{5} = 0

(b) r(1)r(-1):

r(1)=2(1)1+5=24=12r(-1) = \frac{2(-1)}{-1 + 5} = \frac{-2}{4} = -\frac{1}{2}

(c) r(3)r(-3):

r(3)=2(3)3+5=62=3r(-3) = \frac{2(-3)}{-3 + 5} = \frac{-6}{2} = -3

(d) r(12)r\left(\frac{1}{2}\right):

r(12)=2(12)12+5=1112=1×211=211r\left(\frac{1}{2}\right) = \frac{2\left(\frac{1}{2}\right)}{\frac{1}{2} + 5} = \frac{1}{\frac{11}{2}} = \frac{1 \times 2}{11} = \frac{2}{11}

(e) r(0.1)r(0.1):

r(0.1)=2(0.1)0.1+5=0.25.10.0392r(0.1) = \frac{2(0.1)}{0.1 + 5} = \frac{0.2}{5.1} \approx 0.0392

(f) r(10,000)r(10,000):

r(10,000)=2(10,000)10,000+5=20,00010,0051.999r(10,000) = \frac{2(10,000)}{10,000 + 5} = \frac{20,000}{10,005} \approx 1.999

Final Results:

  • (a) r(0)=0r(0) = 0
  • (b) r(1)=12r(-1) = -\frac{1}{2}
  • (c) r(3)=3r(-3) = -3
  • (d) r(12)=211r\left(\frac{1}{2}\right) = \frac{2}{11}
  • (e) r(0.1)0.0392r(0.1) \approx 0.0392
  • (f) r(10,000)1.999r(10,000) \approx 1.999

Would you like more details or have any questions?

Here are five follow-up questions:

  1. What is the domain of the function r(x)=2xx+5r(x) = \frac{2x}{x + 5}?
  2. How does the function behave as xx \to \infty?
  3. Can you determine the vertical asymptote of the function?
  4. What happens to r(x)r(x) as x5x \to -5?
  5. How would you find the inverse of r(x)r(x)?

Tip: When solving rational functions, always check for any values of xx that make the denominator zero, as these are not in the domain of the function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rational Functions
Function Evaluation
Asymptotic Behavior

Formulas

r(x) = (2x)/(x + 5)

Theorems

Properties of Rational Functions
Domain and Asymptotes of Rational Functions

Suitable Grade Level

Grades 10-12