Math Problem Statement

Evaluate each logarithm by using properties of logarithms and the following facts. loga(x) = 5.4

loga(y) = 1.6

loga(z) = 2.4 loga(

y )

Solution

To evaluate expressions involving logarithms, we can use the given facts:

  • loga(x)=5.4\log_a(x) = 5.4
  • loga(y)=1.6\log_a(y) = 1.6
  • loga(z)=2.4\log_a(z) = 2.4

Properties of Logarithms:

  1. Product Rule: loga(mn)=loga(m)+loga(n)\log_a(mn) = \log_a(m) + \log_a(n)
  2. Quotient Rule: loga(mn)=loga(m)loga(n)\log_a\left(\frac{m}{n}\right) = \log_a(m) - \log_a(n)
  3. Power Rule: loga(mn)=nloga(m)\log_a(m^n) = n \cdot \log_a(m)

Now, you want to evaluate the following logarithmic expressions based on these facts:

  1. Evaluate loga(xy)\log_a(xy): Using the product rule: loga(xy)=loga(x)+loga(y)=5.4+1.6=7.0\log_a(xy) = \log_a(x) + \log_a(y) = 5.4 + 1.6 = 7.0

  2. Evaluate loga(xz)\log_a\left(\frac{x}{z}\right): Using the quotient rule: loga(xz)=loga(x)loga(z)=5.42.4=3.0\log_a\left(\frac{x}{z}\right) = \log_a(x) - \log_a(z) = 5.4 - 2.4 = 3.0

  3. Evaluate loga(x2)\log_a(x^2): Using the power rule: loga(x2)=2loga(x)=25.4=10.8\log_a(x^2) = 2 \cdot \log_a(x) = 2 \cdot 5.4 = 10.8

  4. Evaluate loga(zy2)\log_a\left(\frac{z}{y^2}\right): Using the quotient and power rules: loga(zy2)=loga(z)loga(y2)=loga(z)2loga(y)\log_a\left(\frac{z}{y^2}\right) = \log_a(z) - \log_a(y^2) = \log_a(z) - 2 \cdot \log_a(y) Substituting the values: loga(z)2loga(y)=2.421.6=2.43.2=0.8\log_a(z) - 2 \cdot \log_a(y) = 2.4 - 2 \cdot 1.6 = 2.4 - 3.2 = -0.8

Do you need any more details or have any questions?


Here are 5 additional related questions:

  1. How would you evaluate loga(x3z)\log_a\left(x^3z\right)?
  2. Can you calculate loga(x2y3)\log_a\left(\frac{x^2}{y^3}\right)?
  3. What is the value of loga(y4)\log_a(y^4) using the power rule?
  4. How would you approach evaluating loga(xzy2)\log_a\left(\frac{xz}{y^2}\right)?
  5. Can you simplify and solve loga(x3y2)\log_a\left(x^3y^2\right)?

Tip: Always remember to apply the power rule first when there are exponents inside the logarithmic function, as it simplifies the expression early.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Algebra

Formulas

Product Rule: log_a(mn) = log_a(m) + log_a(n)
Quotient Rule: log_a(m/n) = log_a(m) - log_a(n)
Power Rule: log_a(m^n) = n * log_a(m)

Theorems

-

Suitable Grade Level

Grades 9-12