Math Problem Statement

what about this?

Solution

To solve the given mathematical expression, we will evaluate each part step by step.

Expression to Evaluate:

(limx15x2+5x5x2+4x)10+(limx11x216x+4)3+k=0(10181019)k\left( \lim_{x \to \infty} \frac{15x^2 + 5x}{5x^2 + 4x} \right)^{10} + \left( \lim_{x \to 11} \frac{x^2 - 16}{x + 4} \right)^3 + \sum_{k=0}^{\infty} \left( \frac{1018}{1019} \right)^k

Step 1: Evaluate the first limit

limx15x2+5x5x2+4x\lim_{x \to \infty} \frac{15x^2 + 5x}{5x^2 + 4x}

  1. Divide the numerator and the denominator by x2x^2: 15x2+5x5x2+4x=15+5x5+4x\frac{15x^2 + 5x}{5x^2 + 4x} = \frac{15 + \frac{5}{x}}{5 + \frac{4}{x}}
  2. As xx \to \infty, 5x0\frac{5}{x} \to 0 and 4x0\frac{4}{x} \to 0: 15+05+0=155=3\frac{15 + 0}{5 + 0} = \frac{15}{5} = 3 Thus: limx15x2+5x5x2+4x=3\lim_{x \to \infty} \frac{15x^2 + 5x}{5x^2 + 4x} = 3 The expression becomes 3103^{10}.

Step 2: Evaluate the second limit

limx11x216x+4\lim_{x \to 11} \frac{x^2 - 16}{x + 4}

  1. Factor the numerator: x216=(x4)(x+4)x^2 - 16 = (x - 4)(x + 4)
  2. The limit becomes: limx11(x4)(x+4)x+4=limx11(x4)=114=7\lim_{x \to 11} \frac{(x - 4)(x + 4)}{x + 4} = \lim_{x \to 11} (x - 4) = 11 - 4 = 7 Therefore: (limx11x216x+4)3=73\left( \lim_{x \to 11} \frac{x^2 - 16}{x + 4} \right)^3 = 7^3

Step 3: Evaluate the infinite sum

k=0(10181019)k\sum_{k=0}^{\infty} \left( \frac{1018}{1019} \right)^k

  1. This is a geometric series with the first term a=1a = 1 and common ratio r=10181019r = \frac{1018}{1019}: k=0rk=11rforr<1\sum_{k=0}^{\infty} r^k = \frac{1}{1 - r} \quad \text{for} \quad |r| < 1
  2. Calculate the sum: 1110181019=111019=1019\frac{1}{1 - \frac{1018}{1019}} = \frac{1}{\frac{1}{1019}} = 1019

Step 4: Combine all results

310+73+10193^{10} + 7^3 + 1019

  1. Calculate 3103^{10}: 310=590493^{10} = 59049

  2. Calculate 737^3: 73=3437^3 = 343

  3. Combine: 59049+343+1019=6041159049 + 343 + 1019 = 60411

Thus, the final answer is: 60411\boxed{60411}

Would you like more details or have any questions?

Questions You Might Ask:

  1. How do you evaluate limits involving infinity?
  2. What are the properties of geometric series and how are they used?
  3. Can you explain factoring techniques for polynomials?
  4. What are common simplification strategies for rational functions?
  5. How can we identify and simplify limits involving trigonometric functions?

Tip:

For infinite limits, dividing by the highest power of xx in the denominator often simplifies the problem significantly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Geometric Series

Formulas

Limit definition
Geometric series sum formula

Theorems

-

Suitable Grade Level

Grades 11-12