Math Problem Statement
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Limits
Calculus
Differentiation
L'Hôpital's Rule
Formulas
L'Hôpital's Rule: \( \lim_{{x \to c}} \frac{f(x)}{g(x)} = \lim_{{x \to c}} \frac{f'(x)}{g'(x)} \) when \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \)
Derivative of \( e^x \): \( \frac{d}{dx}(e^x) = e^x \)
Theorems
L'Hôpital's Rule
Suitable Grade Level
Grades 11-12, College Introductory Calculus
Related Recommendation
Finding the Limit of Exponential Function (e^(4.9x) - e^(3.6x)) / x as x Approaches 0
Evaluate Limit: lim (x -> 0) [ x / (e^x - 1) ] using L'Hôpital's Rule
Limit Problem Using L'Hôpital's Rule: \( \lim_{x \to 0} \frac{e^{3x} - \sin(3x) - 1}{\cos(x) - 4x^2 - 1} \)
Find Limit Using L'Hôpital's Rule: \( \lim_{{x \to e}} \frac{{x^{20} - 3x}}{{x - e}} \)
Evaluate Limit Using L'Hôpital's Rule: lim (x -> 0) [(12e^x - 12x - 12) / (12x^2)]