Math Problem Statement

Evaluate the given integrals: (a) ∫(49x / √(1 - 49x²)) dx, (b) ∫(25 / √(1 - 25x²)) dx

Solution

Let's solve the given problems step by step.


Problem 8(a):

49x149x2dx\int \frac{49x}{\sqrt{1 - 49x^2}} \, dx

Solution:

  1. Let u=49xu = 49x, so du=49dxdu = 49 \, dx. Then, the integral becomes: u1u2du49.\int \frac{u}{\sqrt{1 - u^2}} \, \frac{du}{49}.

  2. Factor out 149\frac{1}{49}: 149u1u2du.\frac{1}{49} \int \frac{u}{\sqrt{1 - u^2}} \, du.

  3. The antiderivative of u1u2\frac{u}{\sqrt{1 - u^2}} is 1u2+C-\sqrt{1 - u^2} + C.

  4. Substitute back u=49xu = 49x: 1(49x)2+C.-\sqrt{1 - (49x)^2} + C.

Final answer: 149x2+C(Option D).\boxed{-\sqrt{1 - 49x^2} + C \quad \text{(Option D)}.}


Problem 8(b):

25125x2dx\int \frac{25}{\sqrt{1 - 25x^2}} \, dx

Solution:

  1. This is a standard arcsine integral form: a1(ax)2dx=arcsin(ax)+C.\int \frac{a}{\sqrt{1 - (ax)^2}} \, dx = \arcsin(ax) + C.

  2. Here a=5a = 5. Applying the formula: 5arcsin(5x)+C.5 \arcsin(5x) + C.

Final answer: 5arcsin(5x)+C(Option G).\boxed{5\arcsin(5x) + C \quad \text{(Option G)}.}


Would you like further clarifications or step-by-step explanations? Here are 5 related questions to expand your understanding:

  1. How does the substitution method work in integration?
  2. Why is the arcsine function important in integral calculus?
  3. Can you derive the general formula for integrals of the form a1(ax)2dx\int \frac{a}{\sqrt{1 - (ax)^2}} \, dx?
  4. What are the common pitfalls in solving integrals involving square roots?
  5. How can you verify your answer for such integrals?

Tip: For any integral involving 1x2\sqrt{1 - x^2}, always consider trigonometric identities or substitutions like arcsine or cosine for simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Standard Integral Forms

Formulas

∫(x / √(1 - x²)) dx = -√(1 - x²) + C
∫(a / √(1 - (ax)²)) dx = arcsin(ax) + C

Theorems

Fundamental Theorem of Calculus
Trigonometric Substitution

Suitable Grade Level

College Calculus / Advanced High School Math