Math Problem Statement

Evaluate the integral and express your answer in simplest form. integral, start fraction, minus, 5, divided by, x, square root of, x, squared, minus, 4, end square root, end fraction, d, x ∫ x x 2 −4 ​

−5 ​ dx

Solution

To solve the given integral

5xx24dx,\int \frac{-5}{x\sqrt{x^2 - 4}} \, dx,

we use the standard technique involving substitution for integrals containing x2a2\sqrt{x^2 - a^2}.


Step 1: Identify the form

This integral suggests the substitution: x=2secθ,dx=2secθtanθdθ,x24=2tanθ.x = 2 \sec \theta, \quad dx = 2 \sec \theta \tan \theta \, d\theta, \quad \sqrt{x^2 - 4} = 2 \tan \theta.


Step 2: Substitute

Using the substitutions: 5xx24dx=52secθ2tanθ2secθtanθdθ,\frac{-5}{x\sqrt{x^2 - 4}} \, dx = \frac{-5}{2\sec\theta \cdot 2\tan\theta} \cdot 2\sec\theta \tan\theta \, d\theta, simplify: =54tanθtanθdθ=54dθ.= \frac{-5}{4\tan\theta} \cdot \tan\theta \, d\theta = \frac{-5}{4} \, d\theta.


Step 3: Integrate

The integral becomes: 54dθ=54θ+C.\int \frac{-5}{4} \, d\theta = \frac{-5}{4} \theta + C.


Step 4: Back-substitute

Since x=2secθx = 2 \sec \theta, we know: secθ=x2andθ=sec1(x2).\sec \theta = \frac{x}{2} \quad \text{and} \quad \theta = \sec^{-1}\left(\frac{x}{2}\right). Thus, the integral is: 54sec1(x2)+C.\frac{-5}{4} \sec^{-1}\left(\frac{x}{2}\right) + C.


Final Answer:

5xx24dx=54sec1(x2)+C.\int \frac{-5}{x\sqrt{x^2 - 4}} \, dx = \frac{-5}{4} \sec^{-1}\left(\frac{x}{2}\right) + C.

Would you like me to break down any step further or explain the substitution method more?


Related Questions:

  1. How do you integrate 1xx2a2dx\int \frac{1}{x\sqrt{x^2 - a^2}} \, dx?
  2. What are some common substitutions used for x2±a2\sqrt{x^2 \pm a^2}?
  3. Can you explain the geometric interpretation of sec1(x)\sec^{-1}(x)?
  4. How is the substitution x=asecθx = a \sec \theta derived for x2a2\sqrt{x^2 - a^2}?
  5. How do you determine constants of integration in definite integrals?

Tip:

For integrals involving x2a2\sqrt{x^2 - a^2}, always check if a trigonometric substitution simplifies the expression efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Radical Functions

Formulas

∫ 1 / (x √(x² - a²)) dx = 1/a * sec⁻¹(x/a) + C

Theorems

Trigonometric Substitution
Integration by Substitution

Suitable Grade Level

College Level