Math Problem Statement

Use substitution

Using any suitable integration technique, evaluate the integral from 0 to 1 of sin^(-1)(2x / (1 + x^2)) dx, giving your answer in exact form.

Solution

Let’s evaluate the integral:

I=01sin1(2x1+x2)dxI = \int_0^1 \sin^{-1}\left(\frac{2x}{1 + x^2}\right) \, dx

We’ll solve this using substitution.


Step 1: Substitution

We notice that:

u=2x1+x2u = \frac{2x}{1 + x^2}

Now, let's differentiate uu with respect to xx.

dudx=(1+x2)(2)2x(2x)(1+x2)2=22x2(1+x2)2=2(1x2)(1+x2)2\frac{du}{dx} = \frac{(1 + x^2)(2) - 2x(2x)}{(1 + x^2)^2} = \frac{2 - 2x^2}{(1 + x^2)^2} = \frac{2(1 - x^2)}{(1 + x^2)^2}

Thus,

du=2(1x2)(1+x2)2dxdu = \frac{2(1 - x^2)}{(1 + x^2)^2} \, dx


Step 2: Adjust the Substitution

We rewrite the term sin1(u)\sin^{-1}(u). However, this direct substitution gets slightly complicated for integration since the derivative of uu is complex.

Instead, observe that:

2x1+x2=sin(2θ)ifx=tan(θ).\frac{2x}{1 + x^2} = \sin(2\theta) \quad \text{if} \quad x = \tan(\theta).

Thus, a trigonometric substitution could be helpful. Let’s try the trigonometric substitution x=tan(θ)x = \tan(\theta), which transforms the integrand.


Step 3: Trigonometric Substitution

With x=tan(θ)x = \tan(\theta), we have:

dx=sec2(θ)dθ,1+x2=sec2(θ).dx = \sec^2(\theta) \, d\theta, \quad 1 + x^2 = \sec^2(\theta).

Thus,

2x1+x2=sin(2θ).\frac{2x}{1 + x^2} = \sin(2\theta).

The integral becomes:

I=0π/4sin1(sin(2θ))sec2(θ)dθ.I = \int_0^{\pi/4} \sin^{-1}(\sin(2\theta)) \, \sec^2(\theta) \, d\theta.

Since sin1(sin(2θ))=2θ\sin^{-1}(\sin(2\theta)) = 2\theta for 0θπ/40 \leq \theta \leq \pi/4, the integral simplifies to:

I=0π/42θsec2(θ)dθ.I = \int_0^{\pi/4} 2\theta \, \sec^2(\theta) \, d\theta.


Step 4: Evaluate the Integral

Evaluating this integral is now straightforward.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution
Trigonometric Substitution
Inverse Trigonometric Functions

Formulas

sin^(-1)(x)
Substitution: u = 2x / (1 + x^2)
Trigonometric Substitution: x = tan(θ)

Theorems

Inverse Trigonometric Function Identity
Trigonometric Substitution

Suitable Grade Level

Undergraduate Calculus