Math Problem Statement

If \( \int_0^{\pi/4} \frac{\ln(\cot x)}{(\sin x)^{2009} + (\cos x)^{2009}} \cdot (\sin 2x)^{2008} \, dx = \frac{a^b \ln a}{c^2} \), where \( a \), \( b \), and \( c \) are in their lowest form, find the value of \( a + b + c \).

Solution

To solve this integral problem, we need to analyze the given integral expression:

0π/4ln(cotx)(sinx)2009+(cosx)2009(sin2x)2008dx=ablnac2\int_0^{\pi/4} \frac{\ln(\cot x)}{(\sin x)^{2009} + (\cos x)^{2009}} \cdot (\sin 2x)^{2008} \, dx = \frac{a^b \ln a}{c^2}

where aa, bb, and cc are integers in their lowest form. The goal is to find the value of a+b+ca + b + c.

Step-by-Step Solution:

  1. Simplify sin2x\sin 2x:

    • Recall that sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x.
    • Therefore, (sin2x)2008=(2sinxcosx)2008=22008(sinx)2008(cosx)2008(\sin 2x)^{2008} = (2 \sin x \cos x)^{2008} = 2^{2008} (\sin x)^{2008} (\cos x)^{2008}.
  2. **Rewrite

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Logarithmic Functions
Trigonometric Identities

Formulas

\( \sin 2x = 2 \sin x \cos x \)
\( \int \frac{\ln(\cot x)}{f(x)} dx \)

Theorems

Integration by Parts

Suitable Grade Level

Undergraduate Mathematics