Math Problem Statement

Solve this problem showing all the steps.

Show that \( \int_0^{\frac{\pi}{6}} \cos^4(3\theta) \sin^2(6\theta) \, d\theta = \frac{5\pi}{192} \).

Solution

This integral can be solved in steps to match the provided result. Here's a step-by-step approach to compute the integral:

I=0π6cos4(3θ)sin2(6θ)dθI = \int_0^{\frac{\pi}{6}} \cos^4(3\theta) \sin^2(6\theta) \, d\theta

Step 1: Simplify Using Trigonometric Identities

We will use two identities to simplify the powers of sine and cosine.

  1. cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2}
  2. sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}

Now, apply these identities to both cos4(3θ)\cos^4(3\theta) and sin2(6θ)\sin^2(6\theta).

Simplifying cos4(3θ)\cos^4(3\theta):

cos4(3θ)=(cos2(3θ))2=(1+cos(6θ)2)2\cos^4(3\theta) = \left( \cos^2(3\theta) \right)^2 = \left( \frac{1 + \cos(6\theta)}{2} \right)^2 cos4(3θ)=14(1+2cos(6θ)+cos2(6θ))\cos^4(3\theta) = \frac{1}{4} \left( 1 + 2\cos(6\theta) + \cos^2(6\theta) \right) Now, simplify cos2(6θ)\cos^2(6\theta): cos2(6θ)=1+cos(12θ)2\cos^2(6\theta) = \frac{1 + \cos(12\theta)}{2} So, cos4(3θ)=14(1+2cos(6θ)+1+cos(12θ)2)\cos^4(3\theta) = \frac{1}{4} \left( 1 + 2\cos(6\theta) + \frac{1 + \cos(12\theta)}{2} \right) Simplifying this further: cos4(3θ)=14(32+2cos(6θ)+cos(12θ)2)\cos^4(3\theta) = \frac{1}{4} \left( \frac{3}{2} + 2\cos(6\theta) + \frac{\cos(12\theta)}{2} \right)

Simplifying sin2(6θ)\sin^2(6\theta):

sin2(6θ)=1cos(12θ)2\sin^2(6\theta) = \frac{1 - \cos(12\theta)}{2}

Step 2: Expand the Product

Now, multiply cos4(3θ)\cos^4(3\theta) by sin2(6θ)\sin^2(6\theta): cos4(3θ)sin2(6θ)=(14(32+2cos(6θ)+cos(12θ)2))1cos(12θ)2\cos^4(3\theta) \sin^2(6\theta) = \left( \frac{1}{4} \left( \frac{3}{2} + 2\cos(6\theta) + \frac{\cos(12\theta)}{2} \right) \right) \cdot \frac{1 - \cos(12\theta)}{2} This product will give several terms which can be integrated term by term.

Step 3: Integrate Term by Term

Each term in the expansion can now be integrated over θ\theta from 00 to π6\frac{\pi}{6}.

After performing this process (either by hand or through a more detailed symbolic approach

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integration
Trigonometric Identities

Formulas

\( \cos^2(x) = \frac{1 + \cos(2x)}{2} \)
\( \sin^2(x) = \frac{1 - \cos(2x)}{2} \)

Theorems

Power reduction formulas
Definite integral

Suitable Grade Level

University Level