Math Problem Statement
π/2 |3 sin(x) β 3 cos(2x)| dx
0
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Calculus
Integration
Absolute Value
Trigonometric Identities
Formulas
Absolute value: |a - b| = a - b if a >= b, -(a - b) if a < b
Trigonometric identity: \( \cos(2x) = 1 - 2\sin^2(x) \)
Quadratic formula: \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
Integral of \( \sin^2(x) \): \( \int \sin^2(x) dx = \frac{x}{2} - \frac{\sin(2x)}{4} + C \)
Theorems
Fundamental Theorem of Calculus
Suitable Grade Level
Grades 11-12, Undergraduate Calculus
Related Recommendation
Evaluate the Integral of |sin(x)sin(2x) - |cos(x)|cos^2(x)| from 0 to Ο
Evaluate Definite Integral of Trigonometric Functions: 2sin(3x) - 4cos(2x)
Integral of Absolute Value of Sin(x) from 0 to 3Ο/2
Evaluate the Definite Integral of Absolute Value Function |2x - 3| from 0 to 2
Evaluate Integral of Square Root of 1 - sin 2x from 0 to 3pi/4