Math Problem Statement

03π4 ⁣1sin2xdx\int_0^{\frac{3\pi}{4}}\!\sqrt{1-\sin2x}\,\mathrm{d}x

Solution

To solve the integral 03π41sin2xdx\int_0^{\frac{3\pi}{4}} \sqrt{1 - \sin 2x} \, \mathrm{d}x, we'll use trigonometric identities and substitution.

Step 1: Simplify the integrand

First, recall the trigonometric identity: sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x Thus, the integrand becomes: 1sin2x\sqrt{1 - \sin 2x}

Step 2: Use the identity for 1sin2x1 - \sin 2x

We can use the identity: 1sin2x=cos2(x+π4)1 - \sin 2x = \cos^2\left(x + \frac{\pi}{4}\right) Thus, the integral becomes: 03π4cos2(x+π4)dx\int_0^{\frac{3\pi}{4}} \sqrt{\cos^2\left(x + \frac{\pi}{4}\right)} \, \mathrm{d}x

Step 3: Simplify the square root

Since cos2y=cosy\sqrt{\cos^2 y} = |\cos y|, we get: 03π4cos(x+π4)dx\int_0^{\frac{3\pi}{4}} |\cos\left(x + \frac{\pi}{4}\right)| \, \mathrm{d}x Here, the absolute value is crucial because the cosine function can be negative over some intervals.

Step 4: Evaluate the integral

To handle the absolute value, we must break the integral into intervals where cos(x+π4)\cos\left(x + \frac{\pi}{4}\right) is non-negative and where it is negative.

The function cos(x+π4)\cos\left(x + \frac{\pi}{4}\right) is non-negative in the interval [0,3π4π4][0, \frac{3\pi}{4} - \frac{\pi}{4}], that is, [0,π2][0, \frac{\pi}{2}], and negative in [π2,3π4][\frac{\pi}{2}, \frac{3\pi}{4}].

So, the integral splits into two parts: 0π2cos(x+π4)dxπ23π4cos(x+π4)dx\int_0^{\frac{\pi}{2}} \cos\left(x + \frac{\pi}{4}\right) \, \mathrm{d}x - \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \cos\left(x + \frac{\pi}{4}\right) \, \mathrm{d}x

Step 5: Integrate each part

  1. For 0π2cos(x+π4)dx\int_0^{\frac{\pi}{2}} \cos\left(x + \frac{\pi}{4}\right) \, \mathrm{d}x, use the substitution u=x+π4u = x + \frac{\pi}{4}, du=dx\mathrm{d}u = \mathrm{d}x: π43π4cosudu=sinuπ43π4=sin3π4sinπ4=2222=0\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \cos u \, \mathrm{d}u = \sin u \Big|_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = \sin\frac{3\pi}{4} - \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0

  2. For π23π4cos(x+π4)dx-\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \cos\left(x + \frac{\pi}{4}\right) \, \mathrm{d}x: 3π4πcosudu=sinu3π4π=(sinπsin3π4)=0(22)=22-\int_{\frac{3\pi}{4}}^{\pi} \cos u \, \mathrm{d}u = -\sin u \Big|_{\frac{3\pi}{4}}^{\pi} = -(\sin\pi - \sin\frac{3\pi}{4}) = 0 - \left(-\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}

Final Answer

Thus, the integral evaluates to: 22\boxed{\frac{\sqrt{2}}{2}}

Would you like further details on any step or have any questions?


  1. What are the conditions where the cosine function is negative?
  2. How does the identity 1sin2x=cos2(x+π4)1 - \sin 2x = \cos^2(x + \frac{\pi}{4}) derive?
  3. Why is the integral split into two parts?
  4. What is the significance of the absolute value in the integral?
  5. How can substitution help simplify trigonometric integrals?

Tip: Always consider the sign of trigonometric functions when dealing with integrals that involve absolute values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integral Calculus

Formulas

Trigonometric identities
Substitution in integrals

Theorems

-

Suitable Grade Level

College