Math Problem Statement

fill in the empty boxes

Determine whether the improper integral \( \int_{4}^{\infty} \frac{1}{x^2 - 2x - 3} dx \) converges or diverges. If it converges, compute its value.

Solution

Let’s work step by step to solve this improper integral problem.

Part 1:

We are tasked to evaluate the definite integral
A(t)=4t1x22x3dxA(t) = \int_{4}^{t} \frac{1}{x^2 - 2x - 3} dx for t>4t > 4.

Step 1: Factorize the denominator

The denominator x22x3x^2 - 2x - 3 can be factorized as:
x22x3=(x3)(x+1)x^2 - 2x - 3 = (x - 3)(x + 1)

Step 2: Use partial fraction decomposition

We write: 1x22x3=Ax3+Bx+1\frac{1}{x^2 - 2x - 3} = \frac{A}{x - 3} + \frac{B}{x + 1} Multiplying through by (x3)(x+1)(x - 3)(x + 1), we get: 1=A(x+1)+B(x3)1 = A(x + 1) + B(x - 3) Expanding and matching coefficients: 1=Ax+A+Bx3B    (A+B)x+(A3B)=11 = A x + A + B x - 3B \implies (A + B)x + (A - 3B) = 1 From this:

  1. A+B=0A + B = 0
  2. A3B=1A - 3B = 1

Solving these equations:

  1. A=BA = -B
  2. Substituting A=BA = -B into A3B=1A - 3B = 1:
    B3B=1    4B=1    B=14-B - 3B = 1 \implies -4B = 1 \implies B = -\frac{1}{4}
    Therefore, A=14A = \frac{1}{4}.

Thus: 1x22x3=1/4x31/4x+1\frac{1}{x^2 - 2x - 3} = \frac{1/4}{x - 3} - \frac{1/4}{x + 1}

Step 3: Integrate

A(t)=4t(1/4x31/4x+1)dxA(t) = \int_{4}^{t} \left( \frac{1/4}{x - 3} - \frac{1/4}{x + 1} \right) dx Separate the integrals: A(t)=144t1x3dx144t1x+1dxA(t) = \frac{1}{4} \int_{4}^{t} \frac{1}{x - 3} dx - \frac{1}{4} \int_{4}^{t} \frac{1}{x + 1} dx The integrals are: 1x3dx=lnx3,1x+1dx=lnx+1\int \frac{1}{x - 3} dx = \ln|x - 3|, \quad \int \frac{1}{x + 1} dx = \ln|x + 1| So: [ A(t) = \frac{1}{4} \left[ \ln|x - 3| \right]{4}^{t} - \frac{1}{4} \left[ \ln|x + 1| \right]{4}^{t} ]

Evaluate: A(t)=14(lnt3ln43)14(lnt+1ln4+1)A(t) = \frac{1}{4} \left( \ln|t - 3| - \ln|4 - 3| \right) - \frac{1}{4} \left( \ln|t + 1| - \ln|4 + 1| \right) Simplify: A(t)=14lnt314ln114lnt+1+14ln5A(t) = \frac{1}{4} \ln|t - 3| - \frac{1}{4} \ln 1 - \frac{1}{4} \ln|t + 1| + \frac{1}{4} \ln 5 Since ln1=0\ln 1 = 0, this reduces to: A(t)=14lnt314lnt+1+14ln5A(t) = \frac{1}{4} \ln|t - 3| - \frac{1}{4} \ln|t + 1| + \frac{1}{4} \ln 5 Combine logs: A(t)=14ln(5(t3)t+1)A(t) = \frac{1}{4} \ln \left( \frac{5(t - 3)}{t + 1} \right)

Part 2:

Take the limit of A(t)A(t) as tt \to \infty: limtA(t)=limt14ln(5(t3)t+1)\lim_{t \to \infty} A(t) = \lim_{t \to \infty} \frac{1}{4} \ln \left( \frac{5(t - 3)}{t + 1} \right) Simplify the fraction inside the log: t3t+1=t(13/t)t(1+1/t)101+0=1as t\frac{t - 3}{t + 1} = \frac{t(1 - 3/t)}{t(1 + 1/t)} \to \frac{1 - 0}{1 + 0} = 1 \quad \text{as } t \to \infty Thus: limtA(t)=14ln(51)=14ln5\lim_{t \to \infty} A(t) = \frac{1}{4} \ln(5 \cdot 1) = \frac{1}{4} \ln 5

Part 3:

Since the limit exists and is finite, the improper integral converges, and its value is: 14ln5\boxed{\frac{1}{4} \ln 5}


Would you like me to clarify any step further?

Related Questions:

  1. How do you perform partial fraction decomposition in general?
  2. What are some strategies to identify if an improper integral diverges?
  3. Why is it necessary to evaluate the limit as tt \to \infty?
  4. Can all improper integrals be evaluated using partial fractions?
  5. What are other techniques for solving improper integrals (e.g., comparison tests)?

Tip:

When evaluating limits of logarithmic functions, always simplify the argument first to avoid unnecessary complexity!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper Integrals
Partial Fraction Decomposition
Definite Integration
Limits

Formulas

\( \int \frac{1}{x - a} dx = \ln|x - a| + C \)
Partial fractions formula: \( \frac{1}{(x - a)(x - b)} = \frac{A}{x - a} + \frac{B}{x - b} \)

Theorems

Limit properties
Logarithmic integration rule

Suitable Grade Level

Grades 11-12 and college-level calculus