Math Problem Statement
$f(x) = \sum_{n=1}^{\infty} (-1)^n \frac{\sin \left( \frac{n \pi x}{2} \right)}{n^2}$ solve for when x=1 and this function is defined within the interval[0,2]
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Infinite Series
Trigonometric Functions
Alternating Series
Sine Function Periodicity
Formulas
f(x) = \sum_{n=1}^{\infty} (-1)^n \frac{\sin \left( \frac{n \pi x}{2} \right)}{n^2}
\sin \left( \frac{n \pi}{2} \right) = 0, 1, -1
\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} = \frac{\pi^2}{8}
Theorems
Alternating Series Test
Trigonometric Function Properties
Suitable Grade Level
Grades 11-12
Related Recommendation
Correct Representation of sin(\frac{(2k+1)\pi}{2}) using Series Expansion
Convergence of Alternating Series: \(\sum_{n=2}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)\)
Fourier Series Representation for f(x) = x sin x on 0 < x < 2π
Trigonometric Function Analysis: f(x) = sin(x) / (1 + cos(x))
Simplify sin(-x) + sin(x) Using Odd Function Properties